These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20162562)
1. Changing the phospholipid composition of Staphylococcus aureus causes distinct changes in membrane proteome and membrane-sensory regulators. Sievers S; Ernst CM; Geiger T; Hecker M; Wolz C; Becher D; Peschel A Proteomics; 2010 Apr; 10(8):1685-93. PubMed ID: 20162562 [TBL] [Abstract][Full Text] [Related]
2. The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits. Ernst CM; Kuhn S; Slavetinsky CJ; Krismer B; Heilbronner S; Gekeler C; Kraus D; Wagner S; Peschel A mBio; 2015 Jan; 6(1):. PubMed ID: 25626904 [TBL] [Abstract][Full Text] [Related]
3. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Ernst CM; Peschel A Mol Microbiol; 2011 Apr; 80(2):290-9. PubMed ID: 21306448 [TBL] [Abstract][Full Text] [Related]
4. Alanyl-phosphatidylglycerol and lysyl-phosphatidylglycerol are translocated by the same MprF flippases and have similar capacities to protect against the antibiotic daptomycin in Staphylococcus aureus. Slavetinsky CJ; Peschel A; Ernst CM Antimicrob Agents Chemother; 2012 Jul; 56(7):3492-7. PubMed ID: 22491694 [TBL] [Abstract][Full Text] [Related]
6. [Analyses of Streptomyces coelicolor inner membrane proteome by multidimentional protein identification technology]. Shi XM; Luo YM; Zhang GF; Su ZG; Huang YB; Yang KQ Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):814-9. PubMed ID: 16285527 [TBL] [Abstract][Full Text] [Related]
7. Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. Liang X; Zhao J; Hajivandi M; Wu R; Tao J; Amshey JW; Pope RM J Proteome Res; 2006 Oct; 5(10):2632-41. PubMed ID: 17022634 [TBL] [Abstract][Full Text] [Related]
8. Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach. Hempel K; Pané-Farré J; Otto A; Sievers S; Hecker M; Becher D J Proteome Res; 2010 Mar; 9(3):1579-90. PubMed ID: 20108986 [TBL] [Abstract][Full Text] [Related]
9. Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Ziebandt AK; Kusch H; Degner M; Jaglitz S; Sibbald MJ; Arends JP; Chlebowicz MA; Albrecht D; Pantucek R; Doskar J; Ziebuhr W; Bröker BM; Hecker M; van Dijl JM; Engelmann S Proteomics; 2010 Apr; 10(8):1634-44. PubMed ID: 20186749 [TBL] [Abstract][Full Text] [Related]
11. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. Staubitz P; Neumann H; Schneider T; Wiedemann I; Peschel A FEMS Microbiol Lett; 2004 Feb; 231(1):67-71. PubMed ID: 14769468 [TBL] [Abstract][Full Text] [Related]
12. The Staphylococcus aureus proteome. Otto A; van Dijl JM; Hecker M; Becher D Int J Med Microbiol; 2014 Mar; 304(2):110-20. PubMed ID: 24439828 [TBL] [Abstract][Full Text] [Related]
13. A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Papa R; Artini M; Cellini A; Tilotta M; Galano E; Pucci P; Amoresano A; Selan L Microb Pathog; 2013 Oct; 63():44-53. PubMed ID: 23811076 [TBL] [Abstract][Full Text] [Related]
14. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. Ernst CM; Staubitz P; Mishra NN; Yang SJ; Hornig G; Kalbacher H; Bayer AS; Kraus D; Peschel A PLoS Pathog; 2009 Nov; 5(11):e1000660. PubMed ID: 19915718 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the proteomic profile of Mycobacterium leprae cell envelope. Marques MA; Neves-Ferreira AG; da Silveira EK; Valente RH; Chapeaurouge A; Perales J; da Silva Bernardes R; Dobos KM; Spencer JS; Brennan PJ; Pessolani MC Proteomics; 2008 Jun; 8(12):2477-91. PubMed ID: 18563741 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and function of phospholipids in Staphylococcus aureus. Kuhn S; Slavetinsky CJ; Peschel A Int J Med Microbiol; 2015 Feb; 305(2):196-202. PubMed ID: 25595024 [TBL] [Abstract][Full Text] [Related]
17. Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Wolff S; Hahne H; Hecker M; Becher D Mol Cell Proteomics; 2008 Aug; 7(8):1460-8. PubMed ID: 18460691 [TBL] [Abstract][Full Text] [Related]
18. Analysis of plasma membrane proteome in soybean and application to flooding stress response. Komatsu S; Wada T; Abaléa Y; Nouri MZ; Nanjo Y; Nakayama N; Shimamura S; Yamamoto R; Nakamura T; Furukawa K J Proteome Res; 2009 Oct; 8(10):4487-99. PubMed ID: 19658398 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Resch A; Leicht S; Saric M; Pásztor L; Jakob A; Götz F; Nordheim A Proteomics; 2006 Mar; 6(6):1867-77. PubMed ID: 16470655 [TBL] [Abstract][Full Text] [Related]
20. An alternative strategy for the membrane proteome analysis of the green sulfur bacterium Chlorobium tepidum using blue native PAGE and 2-D PAGE on purified membranes. Aivaliotis M; Karas M; Tsiotis G J Proteome Res; 2007 Mar; 6(3):1048-58. PubMed ID: 17261056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]