These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 20162624)
1. Computational delineation of the catalytic step of a high-fidelity DNA polymerase. Venkatramani R; Radhakrishnan R Protein Sci; 2010 Apr; 19(4):815-25. PubMed ID: 20162624 [TBL] [Abstract][Full Text] [Related]
2. Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Wang Y; Schlick T J Am Chem Soc; 2008 Oct; 130(40):13240-50. PubMed ID: 18785738 [TBL] [Abstract][Full Text] [Related]
3. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. Florián J; Goodman MF; Warshel A J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086 [TBL] [Abstract][Full Text] [Related]
4. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta. Bojin MD; Schlick T J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165 [TBL] [Abstract][Full Text] [Related]
5. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. Arora K; Beard WA; Wilson SH; Schlick T Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758 [TBL] [Abstract][Full Text] [Related]
6. Computational study of the force dependence of phosphoryl transfer during DNA synthesis by a high fidelity polymerase. Venkatramani R; Radhakrishnan R Phys Rev Lett; 2008 Feb; 100(8):088102. PubMed ID: 18352668 [TBL] [Abstract][Full Text] [Related]
7. Energy analysis of chemistry for correct insertion by DNA polymerase beta. Lin P; Pedersen LC; Batra VK; Beard WA; Wilson SH; Pedersen LG Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13294-9. PubMed ID: 16938895 [TBL] [Abstract][Full Text] [Related]
8. Polymerase-tailored variations in the water-mediated and substrate-assisted mechanism for nucleotidyl transfer: insights from a study of T7 DNA polymerase. Wang L; Broyde S; Zhang Y J Mol Biol; 2009 Jun; 389(4):787-96. PubMed ID: 19389406 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues. Oakley AJ; Klvana M; Otyepka M; Nagata Y; Wilce MC; Damborský J Biochemistry; 2004 Feb; 43(4):870-8. PubMed ID: 14744129 [TBL] [Abstract][Full Text] [Related]
10. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Yoon H; Warshel A Proteins; 2017 Aug; 85(8):1446-1453. PubMed ID: 28383109 [TBL] [Abstract][Full Text] [Related]
11. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations. Stevens DR; Hammes-Schiffer S J Am Chem Soc; 2018 Jul; 140(28):8965-8969. PubMed ID: 29932331 [TBL] [Abstract][Full Text] [Related]
12. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion. Lior-Hoffmann L; Wang L; Wang S; Geacintov NE; Broyde S; Zhang Y Nucleic Acids Res; 2012 Oct; 40(18):9193-205. PubMed ID: 22772988 [TBL] [Abstract][Full Text] [Related]
13. Effects of the Y432S Cancer-Associated Variant on the Reaction Mechanism of Human DNA Polymerase κ. Maghsoud Y; Roy A; Leddin EM; Cisneros GA J Chem Inf Model; 2024 May; 64(10):4231-4249. PubMed ID: 38717969 [TBL] [Abstract][Full Text] [Related]
14. Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Batra VK; Beard WA; Shock DD; Krahn JM; Pedersen LC; Wilson SH Structure; 2006 Apr; 14(4):757-66. PubMed ID: 16615916 [TBL] [Abstract][Full Text] [Related]
15. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Perera L; Freudenthal BD; Beard WA; Shock DD; Pedersen LG; Wilson SH Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5228-36. PubMed ID: 26351676 [TBL] [Abstract][Full Text] [Related]
16. Carbinolamine formation and dehydration in a DNA repair enzyme active site. Dodson ML; Walker RC; Lloyd RS PLoS One; 2012; 7(2):e31377. PubMed ID: 22384015 [TBL] [Abstract][Full Text] [Related]
17. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Raper AT; Reed AJ; Suo Z Chem Rev; 2018 Jun; 118(12):6000-6025. PubMed ID: 29863852 [TBL] [Abstract][Full Text] [Related]
18. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Castro C; Smidansky E; Maksimchuk KR; Arnold JJ; Korneeva VS; Götte M; Konigsberg W; Cameron CE Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4267-72. PubMed ID: 17360513 [TBL] [Abstract][Full Text] [Related]
19. Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase. Zhao C; Ling B; Dong L; Liu Y Proteins; 2017 Aug; 85(8):1518-1528. PubMed ID: 28486790 [TBL] [Abstract][Full Text] [Related]
20. Multiple deprotonation paths of the nucleophile 3'-OH in the DNA synthesis reaction. Gregory MT; Gao Y; Cui Q; Yang W Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]