These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20163100)

  • 1. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry.
    Kim SH; Kelly PB; Ortalan V; Browning ND; Clifford AJ
    Anal Chem; 2010 Mar; 82(6):2243-52. PubMed ID: 20163100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological/biomedical accelerator mass spectrometry targets. 2. Physical, morphological, and structural characteristics.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2008 Oct; 80(20):7661-9. PubMed ID: 18785762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2008 Oct; 80(20):7651-60. PubMed ID: 18785761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and biomedical (14)C-accelerator mass spectrometry and graphitization of carbonaceous samples.
    Chung IM; Kim SH
    Analyst; 2013 Jun; 138(12):3347-55. PubMed ID: 23626987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method.
    Kim SH; Kelly PB; Clifford AJ
    Anal Chem; 2009 Jul; 81(14):5949-54. PubMed ID: 19548665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in biomedical applications of accelerator mass spectrometry.
    Hah SS; Henderson PT; Turteltaub KW
    J Biomed Sci; 2009 Jun; 16(1):54. PubMed ID: 19534792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double Trap Interface: A novel gas interface for high throughput analysis of biomedical samples by AMS.
    De Maria D; Fahrni SM; Lozac'h F; Marvalin C; Walles M; Camenisch G; Wacker L; Synal HA
    Drug Metab Pharmacokinet; 2021 Aug; 39():100400. PubMed ID: 34146821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator MS: its role as a frontline bioanalytical technique.
    Seymour MA
    Bioanalysis; 2011 Dec; 3(24):2817-23. PubMed ID: 22185281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer--fitness for purpose in bioanalysis.
    Young GC; Corless S; Felgate CC; Colthup PV
    Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4035-42. PubMed ID: 19009519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry.
    Dingley KH; Roberts ML; Velsko CA; Turteltaub KW
    Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.
    Barker J; Garner RC
    Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerator mass spectrometry in pharmaceutical research and development--a new ultrasensitive analytical method for isotope measurement.
    Garner RC
    Curr Drug Metab; 2000 Sep; 1(2):205-13. PubMed ID: 11465084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass-spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India).
    Agnihotri R; Gahlaud SKS; Patel N; Sharma R; Kumar P; Chopra S
    J Environ Radioact; 2020 Mar; 213():106156. PubMed ID: 31983456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerator mass spectrometry.
    Hellborg R; Skog G
    Mass Spectrom Rev; 2008; 27(5):398-427. PubMed ID: 18470926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of liquid chromatography-accelerator mass spectrometry (LC-AMS) to evaluate the metabolic profiles of a drug candidate in human urine and plasma.
    Prakash C; Shaffer CL; Tremaine LM; Liberman RG; Skipper PL; Flarakos J; Tannenbaum SR
    Drug Metab Lett; 2007 Aug; 1(3):226-31. PubMed ID: 19356047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon isotopes profiles of human whole blood, plasma, red blood cells, urine and feces for biological/biomedical 14C-accelerator mass spectrometry applications.
    Kim SH; Chuang JC; Kelly PB; Clifford AJ
    Anal Chem; 2011 May; 83(9):3312-8. PubMed ID: 21452856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58°C evaluated by naturally-occurring carbon 14 amounts in evolved CO(2) based on the ISO 14855-2 method.
    Kunioka M; Ninomiya F; Funabashi M
    Int J Mol Sci; 2009 Nov; 10(10):4267-4283. PubMed ID: 20057944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of (14)C-accelerator MS in pharmaceutical development.
    Young GC; Seymour M
    Bioanalysis; 2015; 7(5):513-7. PubMed ID: 25826133
    [No Abstract]   [Full Text] [Related]  

  • 19. A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry.
    Ognibene TJ; Bench G; Vogel JS; Peaslee GF; Murov S
    Anal Chem; 2003 May; 75(9):2192-6. PubMed ID: 12720362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.
    Zhao L; Zhao X; Burke LT; Bennett JC; Dunlap RA; Obrovac MN
    ChemSusChem; 2017 Sep; 10(17):3409-3418. PubMed ID: 28763572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.