These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 20163187)
1. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. Ulmschneider MB; Doux JP; Killian JA; Smith JC; Ulmschneider JP J Am Chem Soc; 2010 Mar; 132(10):3452-60. PubMed ID: 20163187 [TBL] [Abstract][Full Text] [Related]
2. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Nymeyer H; Woolf TB; Garcia AE Proteins; 2005 Jun; 59(4):783-90. PubMed ID: 15828005 [TBL] [Abstract][Full Text] [Related]
3. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025 [TBL] [Abstract][Full Text] [Related]
4. Interfacial folding and membrane insertion of a designed helical peptide. Ladokhin AS; White SH Biochemistry; 2004 May; 43(19):5782-91. PubMed ID: 15134452 [TBL] [Abstract][Full Text] [Related]
5. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
6. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
7. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
9. Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Ganchev DN; Rijkers DT; Snel MM; Killian JA; de Kruijff B Biochemistry; 2004 Nov; 43(47):14987-93. PubMed ID: 15554706 [TBL] [Abstract][Full Text] [Related]
10. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Wieprecht T; Beyermann M; Seelig J Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132 [TBL] [Abstract][Full Text] [Related]
11. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875 [TBL] [Abstract][Full Text] [Related]
12. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Kandasamy SK; Larson RG Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453 [TBL] [Abstract][Full Text] [Related]
13. Design of a soluble transmembrane helix for measurements of water-membrane partitioning. Yano Y; Shimai N; Matsuzaki K J Phys Chem B; 2010 Feb; 114(5):1925-31. PubMed ID: 20085245 [TBL] [Abstract][Full Text] [Related]
14. Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations. Ulmschneider JP; Ulmschneider MB Proteins; 2009 May; 75(3):586-97. PubMed ID: 19003985 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
16. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
17. Unfolding of class A amphipathic peptides on a lipid surface. Clayton AH; Vultureanu AG; Sawyer WH Biochemistry; 2003 Feb; 42(6):1747-53. PubMed ID: 12578389 [TBL] [Abstract][Full Text] [Related]
18. The membrane affinities of the aliphatic amino acid side chains in an alpha-helical context are independent of membrane immersion depth. Russell CJ; Thorgeirsson TE; Shin YK Biochemistry; 1999 Jan; 38(1):337-46. PubMed ID: 9890915 [TBL] [Abstract][Full Text] [Related]
19. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
20. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor. Lazarova T; Brewin KA; Stoeber K; Robinson CR Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]