These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2016343)
1. Three-dimensional reconstruction of the rat brain cortical microcirculation in vivo. Dirnagl U; Villringer A; Gebhardt R; Haberl RL; Schmiedek P; Einhäupl KM J Cereb Blood Flow Metab; 1991 May; 11(3):353-60. PubMed ID: 2016343 [TBL] [Abstract][Full Text] [Related]
2. In-vivo confocal scanning laser microscopy of the cerebral microcirculation. Dirnagl U; Villringer A; Einhäupl KM J Microsc; 1992 Jan; 165(Pt 1):147-57. PubMed ID: 1552568 [TBL] [Abstract][Full Text] [Related]
3. Visualization of microvascular blood flow in mouse kidney and spleen by quantum dot injection with "in vivo cryotechnique". Terada N; Saitoh Y; Saitoh S; Ohno N; Jin T; Ohno S Microvasc Res; 2010 Dec; 80(3):491-8. PubMed ID: 20858507 [TBL] [Abstract][Full Text] [Related]
4. Long-term in vivo investigation of mouse cerebral microcirculation by fluorescence confocal microscopy in the area of focal ischemia. Tomita Y; Kubis N; Calando Y; Tran Dinh A; Méric P; Seylaz J; Pinard E J Cereb Blood Flow Metab; 2005 Jul; 25(7):858-67. PubMed ID: 15758950 [TBL] [Abstract][Full Text] [Related]
5. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Lauwers F; Cassot F; Lauwers-Cances V; Puwanarajah P; Duvernoy H Neuroimage; 2008 Feb; 39(3):936-48. PubMed ID: 17997329 [TBL] [Abstract][Full Text] [Related]
6. A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy. Vérant P; Serduc R; Van Der Sanden B; Rémy C; Vial JC J Cereb Blood Flow Metab; 2007 May; 27(5):1072-81. PubMed ID: 17063147 [TBL] [Abstract][Full Text] [Related]
7. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593 [TBL] [Abstract][Full Text] [Related]
8. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Unekawa M; Tomita M; Tomita Y; Toriumi H; Miyaki K; Suzuki N Brain Res; 2010 Mar; 1320():69-73. PubMed ID: 20085754 [TBL] [Abstract][Full Text] [Related]
9. Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats. Kroppenstedt SN; Thomale UW; Griebenow M; Sakowitz OW; Schaser KD; Mayr PS; Unterberg AW; Stover JF Crit Care Med; 2003 Aug; 31(8):2211-21. PubMed ID: 12973182 [TBL] [Abstract][Full Text] [Related]
10. Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: a pilot study. Fabricius M; Akgören N; Dirnagl U; Lauritzen M J Cereb Blood Flow Metab; 1997 Dec; 17(12):1326-36. PubMed ID: 9397032 [TBL] [Abstract][Full Text] [Related]
11. Imaging system for three-dimensional mapping of cerebrocortical capillary networks in vivo. Hudetz AG; Greene AS; Fehér G; Knuese DE; Cowley AW Microvasc Res; 1993 Nov; 46(3):293-309. PubMed ID: 8121315 [TBL] [Abstract][Full Text] [Related]
12. Confocal laser scanning microscopy of leukocyte adhesion in the microcirculation of the inflamed rat knee joint capsule. Finkenauer V; Bissinger T; Funk RH; Karbowski A; Seiffge D Microcirculation; 1999 Jun; 6(2):141-52. PubMed ID: 10466116 [TBL] [Abstract][Full Text] [Related]
13. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Cassot F; Lauwers F; Fouard C; Prohaska S; Lauwers-Cances V Microcirculation; 2006 Jan; 13(1):1-18. PubMed ID: 16393942 [TBL] [Abstract][Full Text] [Related]
14. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. Cox SB; Woolsey TA; Rovainen CM J Cereb Blood Flow Metab; 1993 Nov; 13(6):899-913. PubMed ID: 8408316 [TBL] [Abstract][Full Text] [Related]
15. Confocal microscopy and three-dimensional reconstruction of electrophysiologically identified neurons in thick brain slices. Turner JN; Szarowski DH; Smith KL; Marko M; Leith A; Swann JW J Electron Microsc Tech; 1991 May; 18(1):11-23. PubMed ID: 2056347 [TBL] [Abstract][Full Text] [Related]
16. A new fluorescence microscopy for tomographic observation of microcirculation by using dual-beam slit laser illumination. Shibata M; Kawamura T; Sohirad M; Kamiya A Microvasc Res; 1995 May; 49(3):300-14. PubMed ID: 7643751 [TBL] [Abstract][Full Text] [Related]
17. In vivo imaging of the rat cerebral microvessels with optical coherence tomography. Satomura Y; Seki J; Ooi Y; Yanagida T; Seiyama A Clin Hemorheol Microcirc; 2004; 31(1):31-40. PubMed ID: 15272151 [TBL] [Abstract][Full Text] [Related]
19. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. Zhang ET; Inman CB; Weller RO J Anat; 1990 Jun; 170():111-23. PubMed ID: 2254158 [TBL] [Abstract][Full Text] [Related]
20. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol. Lapi D; Marchiafava PL; Colantuoni A J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]