These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2016358)

  • 41. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function.
    Iida H; Kanno I; Miura S; Murakami M; Takahashi K; Uemura K
    J Cereb Blood Flow Metab; 1986 Oct; 6(5):536-45. PubMed ID: 3489723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET.
    Ruotsalainen U; Raitakari M; Nuutila P; Oikonen V; Sipilä H; Teräs M; Knuuti MJ; Bloomfield PM; Iida H
    J Nucl Med; 1997 Feb; 38(2):314-9. PubMed ID: 9025761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: theory and validation.
    Koeppe RA; Holden JE; Polcyn RE; Nickles RJ; Hutchins GD; Weese JL
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):214-23. PubMed ID: 3872873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Weighted summation of oxygen-15-water PET data to increase signal-to-noise ratio for activation studies.
    Andersson JL; Schneider H
    J Nucl Med; 1997 Feb; 38(2):334-40. PubMed ID: 9025765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Emission tomographic measurement of local cerebral blood flow in humans by an in vivo autoradiographic strategy.
    Ginsberg MD; Howard BE; Hassel WR
    Ann Neurol; 1984; 15 Suppl():S12-8. PubMed ID: 6611111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of partition coefficient, permeability surface product, and radioisotope on the signal-to-noise ratio in PET functional brain mapping: a computer simulation.
    Martin CC; Jerabek PA; Nickerson LD; Fox PT
    Hum Brain Mapp; 1999; 7(3):151-60. PubMed ID: 10194616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of nonideal input functions on PET measurements of pulmonary blood flow.
    Markham J; Schuster DP
    J Appl Physiol (1985); 1992 Jun; 72(6):2495-500. PubMed ID: 1629107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mathematical simplification of a PET blood flow model.
    Muzic RF; Nelson AD; Miraldi F
    IEEE Trans Med Imaging; 1990; 9(2):172-6. PubMed ID: 18222761
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Continuous-monitoring detector-system of arterial H2(15)O concentration for positron-emission tomography: construction of the system and correction for the dispersion and time-shift].
    Iida H; Kanno I; Inugami A; Miura S; Murakami M; Takahashi K; Uemura K
    Kaku Igaku; 1987 Oct; 24(10):1587-94. PubMed ID: 3502013
    [No Abstract]   [Full Text] [Related]  

  • 50. Kinetic data analysis with a noisy input function.
    Huesman RH; Mazoyer BM
    Phys Med Biol; 1987 Dec; 32(12):1569-79. PubMed ID: 3501592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal alignment of tissue and arterial data and selection of integration start times for the H(2)(15)O autoradiographic CBF model in PET.
    Muzic RF; Nelson AD; Miraldi F
    IEEE Trans Med Imaging; 1993; 12(3):393-8. PubMed ID: 18218431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sacrouteropexy: New Technique.
    Dastugue MS; Pannunzio MJ; Van Houtte MJ
    J Minim Invasive Gynecol; 2015; 22(6S):S118. PubMed ID: 27678616
    [No Abstract]   [Full Text] [Related]  

  • 53. Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models.
    Zeng GL; Kadrmas DJ; Gullberg GT
    Biomed Eng Online; 2012 Sep; 11():70. PubMed ID: 22995548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic parameter estimation using a closed-form expression via integration by parts.
    Zeng GL; Hernandez A; Kadrmas DJ; Gullberg GT
    Phys Med Biol; 2012 Sep; 57(18):5809-21. PubMed ID: 22951326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-invasive assessment of distribution volume ratios and binding potential: tissue heterogeneity and interindividually averaged time-activity curves.
    Reimold M; Mueller-Schauenburg W; Becker GA; Reischl G; Dohmen BM; Bares R
    Eur J Nucl Med Mol Imaging; 2004 Apr; 31(4):564-77. PubMed ID: 14689241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT.
    Iida H; Eberl S
    J Nucl Cardiol; 1998; 5(3):313-31. PubMed ID: 9669586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new approach of weighted integration technique based on accumulated images using dynamic PET and H2(15)O.
    Yokoi T; Kanno I; Iida H; Miura S; Uemura K
    J Cereb Blood Flow Metab; 1991 May; 11(3):492-501. PubMed ID: 2016358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A fast technique to estimate local cerebral blood flow and partition coefficient using dynamic PET of H(2)15O: a new approach to weighted integration method based on time integration of Kety-Schmidt equation].
    Yokoi T; Kanno I; Iida H; Miura S; Uemura K
    Kaku Igaku; 1990 Mar; 27(3):273-7. PubMed ID: 2352371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis.
    Herscovitch P; Markham J; Raichle ME
    J Nucl Med; 1983 Sep; 24(9):782-9. PubMed ID: 6604139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Weighted integration method for local cerebral blood flow measurements with positron emission tomography.
    Carson RE; Huang SC; Green MV
    J Cereb Blood Flow Metab; 1986 Apr; 6(2):245-58. PubMed ID: 3485644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.