BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 20163735)

  • 1. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
    Segura MJ; Auat Cheein FA; Toibero JM; Mut V; Carelli R
    Sensors (Basel); 2011; 11(2):2035-55. PubMed ID: 22319397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot navigation as hierarchical active inference.
    Çatal O; Verbelen T; Van de Maele T; Dhoedt B; Safron A
    Neural Netw; 2021 Oct; 142():192-204. PubMed ID: 34022669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of different feature selection criteria based on a covariance convergence perspective for a SLAM algorithm.
    Auat Cheein FA; Carelli R
    Sensors (Basel); 2011; 11(1):62-89. PubMed ID: 22346568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Navigating a mobile robot by a traversability field histogram.
    Ye C
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):361-72. PubMed ID: 17416164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A telepresence mobile robot controlled with a noninvasive brain-computer interface.
    Escolano C; Antelis JM; Minguez J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):793-804. PubMed ID: 22180512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation.
    Yuan X; Martínez-Ortega JF; Fernández JAS; Eckert M
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28531135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast map merging algorithm in the field of multirobot SLAM.
    Liu Y; Fan X; Zhang H
    ScientificWorldJournal; 2013; 2013():169635. PubMed ID: 24302855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rollover-free navigation for a mobile agent in an unstructured environment.
    Park JB; Lee JH; Lee BH
    IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):835-48. PubMed ID: 16903368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous shared control of a mobile robot with brain-computer interface and autonomous navigation for daily assistance.
    Xu B; Liu D; Xue M; Miao M; Hu C; Song A
    Comput Struct Biotechnol J; 2023; 22():3-16. PubMed ID: 37600142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trainable Quaternion Extended Kalman Filter with Multi-Head Attention for Dead Reckoning in Autonomous Ground Vehicles.
    Milam G; Xie B; Liu R; Zhu X; Park J; Kim G; Park CH
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.
    Zhang X; Rad AB; Wong YK
    Sensors (Basel); 2012; 12(1):429-52. PubMed ID: 22368478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and implementation of origami robot ROS-based SLAM and autonomous navigation.
    Zhao L; Zhang T; Shang Z
    PLoS One; 2024; 19(3):e0298951. PubMed ID: 38547228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.
    Chemuturi R; Amirabdollahian F; Dautenhahn K
    J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-Controlled 2D Navigation Robot Based on a Spatial Gradient Controller and Predictive Environmental Coordinator.
    Zhang D; Liu S; Zhang J; Li G; Suo D; Liu T; Luo J; Ming Z; Wu J; Yan T
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):6138-6149. PubMed ID: 36343004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-free execution monitoring in behavior-based robotics.
    Pettersson O; Karlsson L; Saffiotti A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):890-901. PubMed ID: 17702287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.