BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 20163735)

  • 21. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards a new modality-independent interface for a robotic wheelchair.
    Bastos-Filho TF; Cheein FA; Müller SM; Celeste WC; de la Cruz C; Cavalieri DC; Sarcinelli-Filho M; Amaral PF; Perez E; Soria CM; Carelli R
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):567-84. PubMed ID: 23744700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.
    Doroodgar B; Liu Y; Nejat G
    IEEE Trans Cybern; 2014 Dec; 44(12):2719-32. PubMed ID: 24760949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm.
    Hassan S; Wang L; Mahmud KR
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Comparison Study between Traditional and Deep-Reinforcement-Learning-Based Algorithms for Indoor Autonomous Navigation in Dynamic Scenarios.
    Arce D; Solano J; Beltrán C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematic/Dynamic SLAM for Autonomous Vehicles Using the Linear Parameter Varying Approach.
    Vial P; Puig V
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
    Lee D; Myung H
    Sensors (Basel); 2014 Jul; 14(7):12467-96. PubMed ID: 25019633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel RGB-D SLAM Algorithm Based on Cloud Robotics.
    Liu Y; Zhang H; Huang C
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review on Visual-SLAM: Advancements from Geometric Modelling to Learning-Based Semantic Scene Understanding Using Multi-Modal Sensor Fusion.
    Lai T
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Adaptive Augmented Vision-Based Ellipsoidal SLAM for Indoor Environments.
    Lahemer ES; Rad A
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC Algorithm.
    Bahraini MS; Rad AB; Bozorg M
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration.
    Melidis C; Iizuka H; Marocco D
    Cogn Process; 2018 May; 19(2):245-264. PubMed ID: 28585090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal cognitive interface for robot navigation.
    Elmogy M; Habel C; Zhang J
    Cogn Process; 2011 Feb; 12(1):53-65. PubMed ID: 21203798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning probabilistic features for robotic navigation using laser sensors.
    Aznar F; Pujol FA; Pujol M; Rizo R; Pujol MJ
    PLoS One; 2014; 9(11):e112507. PubMed ID: 25415377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.