These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

965 related articles for article (PubMed ID: 20163735)

  • 41. Multimodal cognitive interface for robot navigation.
    Elmogy M; Habel C; Zhang J
    Cogn Process; 2011 Feb; 12(1):53-65. PubMed ID: 21203798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Learning probabilistic features for robotic navigation using laser sensors.
    Aznar F; Pujol FA; Pujol M; Rizo R; Pujol MJ
    PLoS One; 2014; 9(11):e112507. PubMed ID: 25415377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Eight-Direction Scanning Detection Algorithm for the Mapping Robot Pathfinding in Unknown Indoor Environment.
    Jiang L; Zhao P; Dong W; Li J; Ai M; Wu X; Hu Q
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30518041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Robust Semi-Direct 3D SLAM for Mobile Robot Based on Dense Optical Flow in Dynamic Scenes.
    Hu B; Luo J
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SOLO-SLAM: A Parallel Semantic SLAM Algorithm for Dynamic Scenes.
    Sun L; Wei J; Su S; Wu P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments.
    Wang C; Wang J; Li C; Ho D; Cheng J; Yan T; Meng L; Meng MQ
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Action selection for single-camera SLAM.
    Vidal-Calleja TA; Sanfeliu A; Andrade-Cetto J
    IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1567-81. PubMed ID: 20350845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.
    Sherwin T; Easte M; Chen AT; Wang KI; Dai W
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Route navigation control system for turtlebot using human-assisted mobility and 3-D SLAM optimization.
    Kumar A; Singh KU; Dadheech P; Sharma A; Alutaibi AI; Abugabah A; Alawajy AM
    Heliyon; 2024 Mar; 10(5):e26828. PubMed ID: 38463821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A robust approach for a filter-based monocular simultaneous localization and mapping (SLAM) system.
    Munguía R; Castillo-Toledo B; Grau A
    Sensors (Basel); 2013 Jul; 13(7):8501-22. PubMed ID: 23823972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.
    Shi D; Collins EG; Dunlap D
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1486-99. PubMed ID: 18179068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.