These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 20163735)

  • 61. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using a LRF sensor in the Kalman-filtering-based localization of a mobile robot.
    Teslić L; Skrjanc I; Klancar G
    ISA Trans; 2010 Jan; 49(1):145-53. PubMed ID: 19828146
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biomimetic navigation system using a polarization sensor and a binocular camera.
    Li J; Chu J; Zhang R; Hu H; Tong K; Li J
    J Opt Soc Am A Opt Image Sci Vis; 2022 May; 39(5):847-854. PubMed ID: 36215446
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An Improved Deep Residual Network-Based Semantic Simultaneous Localization and Mapping Method for Monocular Vision Robot.
    Ni J; Gong T; Gu Y; Zhu J; Fan X
    Comput Intell Neurosci; 2020; 2020():7490840. PubMed ID: 32104171
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 69. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features.
    Oh J; Han C; Lee S
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203682
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Concurrent initialization for Bearing-Only SLAM.
    Munguía R; Grau A
    Sensors (Basel); 2010; 10(3):1511-34. PubMed ID: 22294884
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments.
    Yang Z; Li J; Yang L; Wang Q; Li P; Xia G
    Math Biosci Eng; 2023 Jan; 20(1):145-178. PubMed ID: 36650761
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design and Implementation of an Integrated Control System for Omnidirectional Mobile Robots in Industrial Logistics.
    Neaz A; Lee S; Nam K
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Perception-action map learning in controlled multiscroll systems applied to robot navigation.
    Arena P; De Fiore S; Fortuna L; Patané L
    Chaos; 2008 Dec; 18(4):043119. PubMed ID: 19123629
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel combined SLAM based on RBPF-SLAM and EIF-SLAM for mobile system sensing in a large scale environment.
    He B; Zhang S; Yan T; Zhang T; Liang Y; Zhang H
    Sensors (Basel); 2011; 11(11):10197-219. PubMed ID: 22346639
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adding navigation, artificial audition and vital sign monitoring capabilities to a telepresence mobile robot for remote home care applications.
    Laniel S; Letourneau D; Labbe M; Grondin F; Polgar J; Michaud F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():809-811. PubMed ID: 28813919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Using sensor habituation in mobile robots to reduce oscillatory movements in narrow corridors.
    Chang C
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1582-9. PubMed ID: 16342498
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mobile robot navigation modulated by artificial emotions.
    Lee-Johnson CP; Carnegie DA
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):469-80. PubMed ID: 19822475
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.