BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20163798)

  • 1. Polymer-lipid microbubbles for biosensing and the formation of porous structures.
    Hettiarachchi K; Lee AP
    J Colloid Interface Sci; 2010 Apr; 344(2):521-7. PubMed ID: 20163798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization.
    Huang B; Wu H; Kim S; Kobilka BK; Zare RN
    Lab Chip; 2006 Mar; 6(3):369-73. PubMed ID: 16511619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
    Oh MJ; Ryu TK; Choi SW
    Macromol Rapid Commun; 2013 Nov; 34(21):1728-33. PubMed ID: 24123479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
    Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP
    Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers.
    Plegue TJ; Kovach KM; Thompson AJ; Potkay JA
    Langmuir; 2018 Jan; 34(1):492-502. PubMed ID: 29231737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.
    Wagner O; Thiele J; Weinhart M; Mazutis L; Weitz DA; Huck WT; Haag R
    Lab Chip; 2016 Jan; 16(1):65-9. PubMed ID: 26626826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
    Kang QS; Shen XF; Hu NN; Hu MJ; Liao H; Wang HZ; He ZK; Huang WH
    Analyst; 2013 May; 138(9):2613-9. PubMed ID: 23478568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications.
    Bakshi S; Pandey K; Bose S; Gunjan ; Paul D; Nayak R
    J Colloid Interface Sci; 2019 Sep; 552():34-42. PubMed ID: 31102847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid localized cell trapping on biodegradable polymers using cell surface derivatization and microfluidic networking.
    Sinclair J; Salem AK
    Biomaterials; 2006 Mar; 27(9):2090-4. PubMed ID: 16307795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation of elastic porous cell scaffold fabricated with combined polydimethylsiloxane (PDMS) and hydroxyapatite (HA)].
    Yang Y; Lan D; Huang Y; Li Y; Wang Y; Sun L; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Jun; 31(3):625-31. PubMed ID: 25219247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDMS-based porous particles as support beds for cell immobilization: bacterial biofilm formation as a function of porosity and polymer composition.
    Fernández MR; Casabona MG; Anupama VN; Krishnakumar B; Curutchet GA; Bernik DL
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):289-96. PubMed ID: 20702072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains.
    Kurian P; Kasibhatla B; Daum J; Burns CA; Moosa M; Rosenthal KS; Kennedy JP
    Biomaterials; 2003 Sep; 24(20):3493-503. PubMed ID: 12809778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
    Ferrara KW; Borden MA; Zhang H
    Acc Chem Res; 2009 Jul; 42(7):881-92. PubMed ID: 19552457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
    Hellmich W; Regtmeier J; Duong TT; Ros R; Anselmetti D; Ros A
    Langmuir; 2005 Aug; 21(16):7551-7. PubMed ID: 16042494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size distribution of microbubbles as a function of shell composition.
    Dicker S; Mleczko M; Schmitz G; Wrenn SP
    Ultrasonics; 2013 Sep; 53(7):1363-7. PubMed ID: 23642496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.