These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20163976)

  • 1. Mechanism of 1H-14N cross-relaxation in immobilized proteins.
    Sunde EP; Halle B
    J Magn Reson; 2010 Apr; 203(2):257-73. PubMed ID: 20163976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quadrupole enhanced 1H spin-lattice relaxation of the amide proton in slow tumbling proteins.
    Westlund PO
    Phys Chem Chem Phys; 2010 Apr; 12(13):3136-40. PubMed ID: 20237701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow internal protein dynamics from water (1)H magnetic relaxation dispersion.
    Sunde EP; Halle B
    J Am Chem Soc; 2009 Dec; 131(51):18214-5. PubMed ID: 19954186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic reorientation of 9-methylpurine and 7-methylpurine molecules in methanol solution studied by combining 13C and 14N nuclear spin relaxation data and quantum chemical calculations.
    Kotsyubynskyy D; Gryff-Keller A
    J Phys Chem A; 2007 Feb; 111(7):1179-87. PubMed ID: 17256829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular theory of field-dependent proton spin-lattice relaxation in tissue.
    Halle B
    Magn Reson Med; 2006 Jul; 56(1):60-72. PubMed ID: 16732594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing amide bond nitrogens in solids using 14N NMR spectroscopy.
    Antonijevic S; Halpern-Manners N
    Solid State Nucl Magn Reson; 2008 May; 33(4):82-7. PubMed ID: 18515050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.
    Seliger J; Zagar V
    J Magn Reson; 2009 Aug; 199(2):199-207. PubMed ID: 19464934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14N Polarization Inversion Spin Exchange at Magic Angle (PISEMA).
    Qian C; Fu R; Gor'kov P; Brey WW; Cross TA; Gan Z
    J Magn Reson; 2009 Jan; 196(1):96-9. PubMed ID: 18986816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of water proton relaxation in gels and tissue.
    Chávez FV; Halle B
    Magn Reson Med; 2006 Jul; 56(1):73-81. PubMed ID: 16732591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX.
    Smith JA; Blanz M; Rayner TJ; Rowe MD; Bedford S; Althoefer K
    J Magn Reson; 2011 Dec; 213(1):98-106. PubMed ID: 21978662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy.
    Loth K; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of (15)N CSA and CSA/dipole cross-correlation in (15)N relaxation in solid proteins.
    Sein J; Giraud N; Blackledge M; Emsley L
    J Magn Reson; 2007 May; 186(1):26-33. PubMed ID: 17280844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion.
    Denisov VP; Halle B
    J Mol Biol; 1995 Feb; 245(5):682-97. PubMed ID: 7531248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times.
    Giraud N; Blackledge M; Böckmann A; Emsley L
    J Magn Reson; 2007 Jan; 184(1):51-61. PubMed ID: 17030133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iterative fitting procedure for the determination of longitudinal NMR cross-correlation rates.
    Wang L; Kurochkin AV; Zuiderweg ER
    J Magn Reson; 2000 May; 144(1):175-85. PubMed ID: 10783290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.
    Chiavazza E; Kubala E; Gringeri CV; Düwel S; Durst M; Schulte RF; Menzel MI
    J Magn Reson; 2013 Feb; 227():35-8. PubMed ID: 23262330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.