These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20163980)

  • 1. High resolution cortical bone thickness measurement from clinical CT data.
    Treece GM; Gee AH; Mayhew PM; Poole KE
    Med Image Anal; 2010 Jun; 14(3):276-90. PubMed ID: 20163980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging the femoral cortex: thickness, density and mass from clinical CT.
    Treece GM; Poole KE; Gee AH
    Med Image Anal; 2012 Jul; 16(5):952-65. PubMed ID: 22465079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: a surface-matching approach.
    Khoury A; Whyne CM; Daly M; Moseley D; Bootsma G; Skrinskas T; Siewerdsen J; Jaffray D
    Med Phys; 2007 Apr; 34(4):1380-7. PubMed ID: 17500469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the bone endocortical region using clinical CT.
    Pearson RA; Treece GM
    Med Image Anal; 2018 Feb; 44():28-40. PubMed ID: 29179157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global registration of multiple bone fragments using statistical atlas models: feasibility experiments.
    Moghari MH; Abolmaesumi P
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5374-7. PubMed ID: 19163932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models.
    Schuler B; Fritscher KD; Kuhn V; Eckstein F; Link TM; Schubert R
    Med Phys; 2010 Jun; 37(6):2560-71. PubMed ID: 20632568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of cortical and trabecular components of bone specimens acquired by pQCT.
    Rizzo G; Tresoldi D; Scalco E; Mendez M; Bianchi AM; Moro GL; Rubinacci A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():486-9. PubMed ID: 19162699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative most likely oriented point registration.
    Billings S; Taylor R
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):178-85. PubMed ID: 25333116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.
    Treece GM; Gee AH
    Med Image Anal; 2015 Feb; 20(1):249-64. PubMed ID: 25541355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated 3-D PDM construction from segmented images using deformable models.
    Kaus MR; Pekar V; Lorenz C; Truyen R; Lobregt S; Weese J
    IEEE Trans Med Imaging; 2003 Aug; 22(8):1005-13. PubMed ID: 12906254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
    Kalinosky B; Sabol JM; Piacsek K; Heckel B; Gilat Schmidt T
    Med Phys; 2011 Dec; 38(12):6672-82. PubMed ID: 22149849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust technique for 2D-3D registration.
    Gong RH; Abolmaesumi P; Stewart J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1433-6. PubMed ID: 17945644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional variability of statistical shape models based on surrogate variables.
    Blanc R; Reyes M; Seiler C; Székely G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):84-91. PubMed ID: 20426099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of biomechanical parameters of the proximal femur using statistical appearance models and support vector regression.
    Fritscher K; Schuler B; Link T; Eckstein F; Suhm N; Hänni M; Hengg C; Schubert R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):568-75. PubMed ID: 18979792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated estimation of the upper surface of the diaphragm in 3-D CT images.
    Zhou X; Ninomiya H; Hara T; Fujita H; Yokoyama R; Chen H; Kiryu T; Hoshi H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):351-3. PubMed ID: 18232381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Which Two-dimensional Radiographic Measurements of Cam Femoroacetabular Impingement Best Describe the Three-dimensional Shape of the Proximal Femur?
    Atkins PR; Shin Y; Agrawal P; Elhabian SY; Whitaker RT; Weiss JA; Aoki SK; Peters CL; Anderson AE
    Clin Orthop Relat Res; 2019 Jan; 477(1):242-253. PubMed ID: 30179924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.