BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20164021)

  • 1. Comparison of chromosome centromere topology in differentiating cells with myogenic potential.
    Mikołajczak B; Wiland E; Rozwadowska N; Rucinski M; Mietkiewski T; Kurpisz M
    Folia Histochem Cytobiol; 2009 Jan; 47(3):377-83. PubMed ID: 20164021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells.
    Schwarz-Finsterle J; Scherthan H; Huna A; González P; Mueller P; Schmitt E; Erenpreisa J; Hausmann M
    Mutat Res; 2013 Aug; 756(1-2):56-65. PubMed ID: 23685102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centromeres reposition to the nuclear periphery during L6E9 myogenesis in vitro.
    Chaly N; Munro SB
    Exp Cell Res; 1996 Mar; 223(2):274-8. PubMed ID: 8601404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in chromosome positioning may contribute to the development of diseases related to X-chromosome aneuploidy.
    Petrova NV; Yakutenko II; Alexeevski AV; Verbovoy VA; Razin SV; Iarovaia OV
    J Cell Physiol; 2007 Oct; 213(1):278-83. PubMed ID: 17477348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy.
    Hazzouri M; Rousseaux S; Mongelard F; Usson Y; Pelletier R; Faure AK; Vourc'h C; Sèle B
    Mol Reprod Dev; 2000 Mar; 55(3):307-15. PubMed ID: 10657050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres.
    Lomiento M; Grasser F; Rocchi M; Müller S
    Genomics; 2013 Oct; 102(4):288-95. PubMed ID: 23648727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes.
    Weierich C; Brero A; Stein S; von Hase J; Cremer C; Cremer T; Solovei I
    Chromosome Res; 2003; 11(5):485-502. PubMed ID: 12971724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location of chromosomes in the nucleus of human mesenchymal stem cells.
    Lavrov AV; Voldgorn YI
    Bull Exp Biol Med; 2011 Aug; 151(4):517-20. PubMed ID: 22448380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin.
    Rozwadowska N; Kolanowski T; Wiland E; Siatkowski M; Pawlak P; Malcher A; Mietkiewski T; Olszewska M; Kurpisz M
    PLoS One; 2013; 8(9):e73231. PubMed ID: 24019912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent in situ hybridization (FISH) analysis of the relationship between chromosome location and nuclear morphology in human neutrophils.
    Aquiles Sanchez J; Karni RJ; Wangh LJ
    Chromosoma; 1997 Aug; 106(3):168-77. PubMed ID: 9233990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage.
    Wiland E; Fraczek M; Olszewska M; Kurpisz M
    Sci Rep; 2016 Aug; 6():31614. PubMed ID: 27558650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of chromosomal architecture in human spermatozoa with large vacuoles.
    Perdrix A; Travers A; Clatot F; Sibert L; Mitchell V; Jumeau F; Macé B; Rives N
    Andrology; 2013 Jan; 1(1):57-66. PubMed ID: 23258631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.
    Appelgren H; Kniola B; Ekwall K
    J Cell Sci; 2003 Oct; 116(Pt 19):4035-42. PubMed ID: 12928332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction.
    Zhang P; Friebe B; Lukaszewski AJ; Gill BS
    Chromosoma; 2001 Sep; 110(5):335-44. PubMed ID: 11685533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of heterokaryons between skeletal myoblasts and preadipocytes: myogenic potential of 3T3-L1 preadipocytes.
    Sasao N; Hirayama E; Kim J
    Eur J Cell Biol; 2003 Feb; 82(2):97-103. PubMed ID: 12647936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
    Zhao Y; Zeng H; Nam J; Agarwal S
    Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes.
    Falk M; Lukásová E; Kozubek S; Kozubek M
    Gene; 2002 Jun; 292(1-2):13-24. PubMed ID: 12119095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distance between homologous chromosomes results from chromosome positioning constraints.
    Heride C; Ricoul M; Kiêu K; von Hase J; Guillemot V; Cremer C; Dubrana K; Sabatier L
    J Cell Sci; 2010 Dec; 123(Pt 23):4063-75. PubMed ID: 21084563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spatial localization of homologous chromosomes in human fibroblasts at mitosis.
    Leitch AR; Brown JK; Mosgöller W; Schwarzacher T; Heslop-Harrison JS
    Hum Genet; 1994 Mar; 93(3):275-80. PubMed ID: 8125477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of chromosome positioning during adipocyte differentiation.
    Kuroda M; Tanabe H; Yoshida K; Oikawa K; Saito A; Kiyuna T; Mizusawa H; Mukai K
    J Cell Sci; 2004 Nov; 117(Pt 24):5897-903. PubMed ID: 15537832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.