BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20164186)

  • 1. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis.
    Zhou M; Zhu F; Dong S; Pritchard DG; Wu H
    J Biol Chem; 2010 Apr; 285(16):12140-8. PubMed ID: 20164186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin.
    Bu S; Li Y; Zhou M; Azadin P; Zeng M; Fives-Taylor P; Wu H
    J Bacteriol; 2008 Feb; 190(4):1256-66. PubMed ID: 18083807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesins.
    Zhu F; Erlandsen H; Ding L; Li J; Huang Y; Zhou M; Liang X; Ma J; Wu H
    J Biol Chem; 2011 Jul; 286(30):27048-57. PubMed ID: 21653318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and Dissecting the Glycosylation Pathway of a Streptococcal Serine-rich Repeat Adhesin.
    Zhu F; Zhang H; Yang T; Haslam SM; Dell A; Wu H
    J Biol Chem; 2016 Dec; 291(53):27354-27363. PubMed ID: 28039332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin.
    Li Y; Chen Y; Huang X; Zhou M; Wu R; Dong S; Pritchard DG; Fives-Taylor P; Wu H
    Mol Microbiol; 2008 Dec; 70(5):1094-104. PubMed ID: 18826412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular chaperone mediates a two-protein enzyme complex and glycosylation of serine-rich streptococcal adhesins.
    Wu R; Wu H
    J Biol Chem; 2011 Oct; 286(40):34923-31. PubMed ID: 21862581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis.
    Wu H; Zeng M; Fives-Taylor P
    Infect Immun; 2007 May; 75(5):2181-8. PubMed ID: 17296746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved C-terminal 13-amino-acid motif of Gap1 is required for Gap1 function and necessary for the biogenesis of a serine-rich glycoprotein of Streptococcus parasanguinis.
    Zhou M; Peng Z; Fives-Taylor P; Wu H
    Infect Immun; 2008 Dec; 76(12):5624-31. PubMed ID: 18852249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical residues in Gap3 of Streptococcus parasanguinis involved in Fap1 glycosylation, fimbrial formation and in vitro adhesion.
    Peng Z; Fives-Taylor P; Ruiz T; Zhou M; Sun B; Chen Q; Wu H
    BMC Microbiol; 2008 Mar; 8():52. PubMed ID: 18371226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis.
    Peng Z; Wu H; Ruiz T; Chen Q; Zhou M; Sun B; Fives-Taylor P
    Oral Microbiol Immunol; 2008 Feb; 23(1):70-8. PubMed ID: 18173801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap1 functions as a molecular chaperone to stabilize its interactive partner Gap3 during biogenesis of serine-rich repeat bacterial adhesin.
    Zhou M; Zhu F; Li Y; Zhang H; Wu H
    Mol Microbiol; 2012 Feb; 83(4):866-78. PubMed ID: 22251284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis.
    Liang X; Chen YY; Ruiz T; Wu H
    Infect Immun; 2011 Aug; 79(8):3239-48. PubMed ID: 21576336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap2 promotes the formation of a stable protein complex required for mature Fap1 biogenesis.
    Echlin H; Zhu F; Li Y; Peng Z; Ruiz T; Bedwell GJ; Prevelige PE; Wu H
    J Bacteriol; 2013 May; 195(10):2166-76. PubMed ID: 23475979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of an active N-acetylglucosaminyltransferase enzyme complex from Streptococci.
    Wu R; Zhou M; Wu H
    Appl Environ Microbiol; 2010 Dec; 76(24):7966-71. PubMed ID: 20971868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis.
    Wu H; Bu S; Newell P; Chen Q; Fives-Taylor P
    J Bacteriol; 2007 Feb; 189(4):1390-8. PubMed ID: 16997950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Helical Binding Domain Mediates a Glycosyltransferase Activity of a Bifunctional Protein.
    Zhang H; Zhou M; Yang T; Haslam SM; Dell A; Wu H
    J Biol Chem; 2016 Oct; 291(42):22106-22117. PubMed ID: 27539847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation.
    Garnett JA; Simpson PJ; Taylor J; Benjamin SV; Tagliaferri C; Cota E; Chen YY; Wu H; Matthews S
    Biochem Biophys Res Commun; 2012 Jan; 417(1):421-6. PubMed ID: 22166217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins.
    Zhou M; Wu H
    Microbiology (Reading); 2009 Feb; 155(Pt 2):317-327. PubMed ID: 19202081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential roles of individual domains in selection of secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1.
    Chen Q; Sun B; Wu H; Peng Z; Fives-Taylor PM
    J Bacteriol; 2007 Nov; 189(21):7610-7. PubMed ID: 17766425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a novel transposon mutagenesis system useful in the isolation of Streptococcus parasanguis mutants defective in Fap1 glycosylation.
    Chen Q; Wu H; Fives-Taylor PM
    Infect Immun; 2002 Dec; 70(12):6534-40. PubMed ID: 12438322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.