These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2016428)

  • 1. Measurement of cavitational activity within ultrasonic baths.
    Walmsley AD; Williams AR
    J Dent; 1991 Feb; 19(1):62-6. PubMed ID: 2016428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride.
    Shirgaonkar IZ; Pandit AB
    Ultrason Sonochem; 1997 Jul; 4(3):245-53. PubMed ID: 11232781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrophotometric determination of carbon tetrachloride via ultrasonic oxidation of iodide accelerated by dissolved carbon tetrachloride.
    Zhou R; Luo W; Zhu L; Chen F; Tang H
    Anal Chim Acta; 2007 Aug; 597(2):295-9. PubMed ID: 17683742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleaning of used rotary nickel-titanium files in an ultrasonic bath by locally intensified acoustic cavitation.
    Bryson LM; Fernandez Rivas D; Boutsioukis C
    Int Endod J; 2018 Apr; 51(4):457-468. PubMed ID: 29023781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial activity of ultrasonic cleaners.
    Muqbil I; Burke FJ; Miller CH; Palenik CJ
    J Hosp Infect; 2005 Jul; 60(3):249-55. PubMed ID: 15949617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation into cavitational activity occurring in endosonic instrumentation.
    Lumley PJ; Walmsley AD; Laird WR
    J Dent; 1988 Jun; 16(3):120-2. PubMed ID: 3165992
    [No Abstract]   [Full Text] [Related]  

  • 7. Measurement of field distributions in ultrasonic cleaning baths: implications for cleaning efficiency.
    Marangopoulos IP; Martin CJ; Hutchison JM
    Phys Med Biol; 1995 Nov; 40(11):1897-908. PubMed ID: 8587939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model system to demonstrate the role of cavitational activity in ultrasonic scaling.
    Walmsley AD; Laird WR; Williams AR
    J Dent Res; 1984 Sep; 63(9):1162-5. PubMed ID: 6379010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carbon tetrachloride on sonochemical decomposition of methyl orange in water.
    Okitsu K; Kawasaki K; Nanzai B; Takenaka N; Bandow H
    Chemosphere; 2008 Mar; 71(1):36-42. PubMed ID: 18166211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation.
    Pétrier C; Francony A
    Ultrason Sonochem; 1997 Oct; 4(4):295-300. PubMed ID: 11233811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemical and sonophotocatalytic degradation of malachite green: the effect of carbon tetrachloride on reaction rates.
    Bejarano-Pérez NJ; Suárez-Herrera MF
    Ultrason Sonochem; 2008 Apr; 15(4):612-617. PubMed ID: 17977775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ultrasonic cleaning in control of cross-infection in dentistry.
    Watmough DJ
    Ultrasonics; 1994 Jul; 32(4):315-7. PubMed ID: 8023422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.
    Merouani S; Hamdaoui O; Saoudi F; Chiha M
    J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors.
    Chakinala AG; Gogate PR; Chand R; Bremner DH; Molina R; Burgess AE
    Ultrason Sonochem; 2008 Mar; 15(3):164-70. PubMed ID: 17481935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of chemical dosimetry for comparison of ultrasound and ionizing radiation effects on cavitation.
    Kratochvíl B; Mornstein V
    Physiol Res; 2007; 56 Suppl 1():S77-S84. PubMed ID: 17552892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics and mechanism of ultrasonic degradation of p-nitrophenol in aqueous solution with CCl4 enhancement.
    Wang X; Wei Y; Wang J; Guo W; Wang C
    Ultrason Sonochem; 2012 Jan; 19(1):32-7. PubMed ID: 21741873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study to determine whether cavitation occurs around dental ultrasonic scaling instruments.
    Lea SC; Price GJ; Walmsley AD
    Ultrason Sonochem; 2005 Feb; 12(3):233-6. PubMed ID: 15491887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation occurrence around ultrasonic dental scalers.
    Felver B; King DC; Lea SC; Price GJ; Damien Walmsley A
    Ultrason Sonochem; 2009 Jun; 16(5):692-7. PubMed ID: 19119051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual frequency cavitation event sensor with iodide dosimeter.
    Ebrahiminia A; Mokhtari-Dizaji M; Toliyat T
    Ultrason Sonochem; 2016 Jan; 28():276-282. PubMed ID: 26384909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.