BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20164388)

  • 21. Analysis of primate IBN spike trains using system identification techniques. III. Relationship To motor error during head-fixed saccades and head-free gaze shifts.
    Cullen KE; Guitton D
    J Neurophysiol; 1997 Dec; 78(6):3307-22. PubMed ID: 9405546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Head-eye interactions during vertical gaze shifts made by rhesus monkeys.
    Freedman EG
    Exp Brain Res; 2005 Dec; 167(4):557-70. PubMed ID: 16132972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccade-related neurons in the primate fastigial nucleus: what do they encode?
    Kleine JF; Guan Y; Buttner U
    J Neurophysiol; 2003 Nov; 90(5):3137-54. PubMed ID: 12853435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades.
    Kojima Y; Robinson FR; Soetedjo R
    J Neurophysiol; 2014 Apr; 111(8):1553-63. PubMed ID: 24478158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts.
    Cullen KE; Galiana HL; Sylvestre PA
    J Neurophysiol; 2000 Jan; 83(1):630-7. PubMed ID: 10634902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling between horizontal and vertical components of saccadic eye movements during constant amplitude and direction gaze shifts in the rhesus monkey.
    Freedman EG
    J Neurophysiol; 2008 Dec; 100(6):3375-93. PubMed ID: 18945817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.
    Ohtsuka K; Noda H
    J Neurophysiol; 1995 Nov; 74(5):1828-40. PubMed ID: 8592177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG; Stanford TR; Sparks DL
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture.
    McCluskey MK; Cullen KE
    J Neurophysiol; 2007 Apr; 97(4):2976-91. PubMed ID: 17229827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Matching the oculomotor drive during head-restrained and head-unrestrained gaze shifts in monkey.
    Bechara BP; Gandhi NJ
    J Neurophysiol; 2010 Aug; 104(2):811-28. PubMed ID: 20505131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.
    Walton MM; Freedman EG
    J Neurophysiol; 2014 Jan; 111(2):300-12. PubMed ID: 24174648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity.
    Fuchs AF; Robinson FR; Straube A
    J Neurophysiol; 1994 Dec; 72(6):2714-28. PubMed ID: 7897484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavior of the position vestibular pause (PVP) interneurons of the vestibuloocular reflex during head-free gaze shifts in the monkey.
    Fuchs AF; Ling L; Phillips JO
    J Neurophysiol; 2005 Dec; 94(6):4481-90. PubMed ID: 16120671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical stimulation of the frontal eye fields in the head-free macaque evokes kinematically normal 3D gaze shifts.
    Monteon JA; Constantin AG; Wang H; Martinez-Trujillo J; Crawford JD
    J Neurophysiol; 2010 Dec; 104(6):3462-75. PubMed ID: 20881198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebellar contribution to the spatial encoding of orienting gaze shifts in the head-free cat.
    Goffart L; Pelisson D
    J Neurophysiol; 1994 Nov; 72(5):2547-50. PubMed ID: 7884481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern.
    Fuchs AF; Robinson FR; Straube A
    J Neurophysiol; 1993 Nov; 70(5):1723-40. PubMed ID: 8294949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity.
    Choi WY; Guitton D
    J Neurosci; 2009 Jun; 29(22):7166-80. PubMed ID: 19494139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey.
    Kojima Y; Iwamoto Y; Robinson FR; Noto CT; Yoshida K
    J Neurophysiol; 2008 Jan; 99(1):220-30. PubMed ID: 17977929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: the importance of burst timing.
    Dean P
    Neuroscience; 1995 Oct; 68(4):1059-77. PubMed ID: 8544982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.