These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20164895)

  • 1. Evolution: Revenge of the hopeful monster.
    Chouard T
    Nature; 2010 Feb; 463(7283):864-7. PubMed ID: 20164895
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation.
    Bay RA; Arnegard ME; Conte GL; Best J; Bedford NL; McCann SR; Dubin ME; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Curr Biol; 2017 Nov; 27(21):3344-3349.e4. PubMed ID: 29056455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The changing geometry of a fitness landscape along an adaptive walk.
    Greene D; Crona K
    PLoS Comput Biol; 2014 May; 10(5):e1003520. PubMed ID: 24853069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden randomness between fitness landscapes limits reverse evolution.
    Tan L; Serene S; Chao HX; Gore J
    Phys Rev Lett; 2011 May; 106(19):198102. PubMed ID: 21668204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus.
    Pritchard VL; Viitaniemi HM; McCairns RJ; Merilä J; Nikinmaa M; Primmer CR; Leder EH
    G3 (Bethesda); 2017 Jan; 7(1):165-178. PubMed ID: 27836907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple mathematical model of gradual Darwinian evolution: emergence of a Gaussian trait distribution in adaptation along a fitness gradient.
    Biktashev VN
    J Math Biol; 2014 Apr; 68(5):1225-48. PubMed ID: 23543310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Conversion Facilitates Adaptive Evolution on Rugged Fitness Landscapes.
    Bittihn P; Tsimring LS
    Genetics; 2017 Dec; 207(4):1577-1589. PubMed ID: 28978673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Among-year variation in selection during early life stages and the genetic basis of fitness in Arabidopsis thaliana.
    Postma FM; Ågren J
    Mol Ecol; 2018 Jun; 27(11):2498-2511. PubMed ID: 29676059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them.
    Osmond MM; Otto SP; Martin G
    Genetics; 2020 Feb; 214(2):493-510. PubMed ID: 31822480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution. Spineless fish and dark flies prove gene regulation crucial.
    Pennisi E
    Science; 2009 Dec; 326(5960):1612. PubMed ID: 20019263
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiple adaptive substitutions during evolution in novel environments.
    Jain K; Seetharaman S
    Genetics; 2011 Nov; 189(3):1029-43. PubMed ID: 21900275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly expressed genes evolve under strong epistasis from a proteome-wide scan in E. coli.
    Dasmeh P; Girard É; Serohijos AWR
    Sci Rep; 2017 Nov; 7(1):15844. PubMed ID: 29158562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes.
    Peabody V GL; Li H; Kao KC
    Nat Commun; 2017 Dec; 8(1):2112. PubMed ID: 29235478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the definition and measurement of fitness in finite populations.
    Hansen TF
    J Theor Biol; 2017 Apr; 419():36-43. PubMed ID: 28041891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary biology: Arrhythmia of tempo and mode.
    Rainey PB
    Nature; 2009 Oct; 461(7268):1219-21. PubMed ID: 19865158
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic architecture of parallel pelvic reduction in ninespine sticklebacks.
    Shikano T; Laine VN; Herczeg G; Vilkki J; Merilä J
    G3 (Bethesda); 2013 Oct; 3(10):1833-42. PubMed ID: 23979937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome evolution and adaptation in a long-term experiment with Escherichia coli.
    Barrick JE; Yu DS; Yoon SH; Jeong H; Oh TK; Schneider D; Lenski RE; Kim JF
    Nature; 2009 Oct; 461(7268):1243-7. PubMed ID: 19838166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks.
    Zheng J; Payne JL; Wagner A
    Science; 2019 Jul; 365(6451):347-353. PubMed ID: 31346060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing fitness effects of mutations through long-term bacterial evolution.
    Couce A; Limdi A; Magnan M; Owen SV; Herren CM; Lenski RE; Tenaillon O; Baym M
    Science; 2024 Jan; 383(6681):eadd1417. PubMed ID: 38271521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary biology. Changing a fish's bony armor in the wink of a gene.
    Pennisi E
    Science; 2004 Jun; 304(5678):1736. PubMed ID: 15205506
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.