These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20165227)

  • 1. Thin metal films as applied to Schottky solar cells: optical studies.
    Anderson WA; Delahoy AE; Milano RA
    Appl Opt; 1976 Jun; 15(6):1621-5. PubMed ID: 20165227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping-free fabrication of silicon thin films for schottky solar cell.
    Yun JH; Park YC; Yi J; Woo CS; Kim J
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1371-4. PubMed ID: 22629959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells.
    Leem JW; Yu JS
    Opt Express; 2011 May; 19 Suppl 3():A258-68. PubMed ID: 21643367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping.
    Kim J; Abou-Kandil A; Fogel K; Hovel H; Sadana DK
    ACS Nano; 2010 Dec; 4(12):7331-6. PubMed ID: 21090670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability.
    Zhou WX; Shen Y; Hu ET; Zhao Y; Sheng MY; Zheng YX; Wang SY; Lee YP; Wang CZ; Lynch DW; Chen LY
    Opt Express; 2012 Dec; 20(27):28953-62. PubMed ID: 23263136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.
    Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN
    J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.
    Zhang MJ; Lin Q; Yang X; Mei Z; Liang J; Lin Y; Pan F
    Nano Lett; 2016 Feb; 16(2):1218-23. PubMed ID: 26736028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering of graphene-silicon Schottky junction solar cells with an Al
    Alnuaimi A; Almansouri I; Saadat I; Nayfeh A
    RSC Adv; 2018 Mar; 8(19):10593-10597. PubMed ID: 35540487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schottky barrier thin film transistors using solution-processed n-ZnO.
    Adl AH; Ma A; Gupta M; Benlamri M; Tsui YY; Barlage DW; Shankar K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1423-8. PubMed ID: 22387678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks.
    Wang W; Han SY; Sung SJ; Kim DH; Chang CH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11154-9. PubMed ID: 22782084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films.
    Leschkies KS; Beatty TJ; Kang MS; Norris DJ; Aydil ES
    ACS Nano; 2009 Nov; 3(11):3638-48. PubMed ID: 19842707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement.
    McShane CM; Choi KS
    Phys Chem Chem Phys; 2012 May; 14(17):6112-8. PubMed ID: 22446958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells.
    Ye Y; Gan L; Dai L; Dai Y; Guo X; Meng H; Yu B; Shi Z; Shang K; Qin G
    Nanoscale; 2011 Apr; 3(4):1477-81. PubMed ID: 21359405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of solution-processable semiconducting TiOx thin films for solar cell and other applications.
    Li J; DeBerardinis AM; Pu L; Gupta MC
    Appl Opt; 2012 Mar; 51(8):1131-6. PubMed ID: 22410993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures.
    Sailor MJ; Ginsburg EJ; Gorman CB; Kumar A; Grubbs RH; Lewis NS
    Science; 1990 Sep; 249(4973):1146-9. PubMed ID: 17831984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers.
    Palomares E; Clifford JN; Haque SA; Lutz T; Durrant JR
    J Am Chem Soc; 2003 Jan; 125(2):475-82. PubMed ID: 12517161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Mo/Cr bilayer back contacts for thin-film solar cells.
    Khoshsirat N; Ali F; Tiing Tiong V; Amjadipour M; Wang H; Shafiei M; Motta N
    Beilstein J Nanotechnol; 2018; 9():2700-2707. PubMed ID: 30416921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocktails of paste coatings for performance enhancement of CuInGaS(2) thin-film solar cells.
    An HS; Cho Y; Park SJ; Jeon HS; Hwang YJ; Kim DW; Min BK
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):888-93. PubMed ID: 24377257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.