BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 201654)

  • 1. The role of butyrate in the reverse transformation reaction in mammalian cells.
    Storrie B; Puck TT; Wenger L
    J Cell Physiol; 1978 Jan; 94(1):69-75. PubMed ID: 201654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible role of adenosine cyclic 3':5'-monophosphate phosphodiesterase in the morphological transformation of Chinese hamster ovary cells mediated by N6,O2-dibutyryl adenosine cyclic 3':5"-monophosphate.
    Hsle AW; Kawashima K; O'Neill JP; Schröder CH
    J Biol Chem; 1975 Feb; 250(3):984-9. PubMed ID: 164438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells.
    Lando M; Abemayor E; Verity MA; Sidell N
    Cancer Res; 1990 Feb; 50(3):722-7. PubMed ID: 2153444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of two structurally related N6-substituted cAMP analogues on C6 glioma cells.
    Zorn M; Maronde E; Jastorff B; Richter-Landsberg C
    Eur J Cell Biol; 1993 Apr; 60(2):351-7. PubMed ID: 8392466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide modulation of in vitro morphological transformation of Syrian hamster cells.
    Mironescu SG; Epstein SM; DiPaolo JA
    Cancer Res; 1982 Apr; 42(4):1274-8. PubMed ID: 7060004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The actions of cyclic AMP, its butyryl derivatives and Na butyrate on the proliferation of malignant trophoblast cells in vitro.
    Barker H; Isles TE
    Br J Cancer; 1977 Mar; 35(3):314-21. PubMed ID: 192258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some steric factors affecting smooth muscle relaxation by cAMP analogs.
    Bresnahan SJ; Borowitz JL; Miya TS
    Arch Int Pharmacodyn Ther; 1975 Dec; 218(2):180-5. PubMed ID: 174501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of parathyroid hormone and cyclic AMP analogues on the activity of ornithine decarboxylase and expression of the differentiated phenotype of chondrocytes in culture.
    Takigawa M; Takano T; Suzuki F
    J Cell Physiol; 1981 Feb; 106(2):259-68. PubMed ID: 6260820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-permeant derivatives of cyclic AMP optimized for high potency, prolonged activity, or rapid reversibility.
    Schultz C; Vajanaphanich M; Genieser HG; Jastorff B; Barrett KE; Tsien RY
    Mol Pharmacol; 1994 Oct; 46(4):702-8. PubMed ID: 7969049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cyclic nucleotides on mammalian motor nerve terminals.
    Standaert FG; Dretchen KL; Skirboll LR; Morgenroth VH
    J Pharmacol Exp Ther; 1976 Dec; 199(3):544-52. PubMed ID: 186584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long acting cAMP analogues enhance sulfate incorporation into matrix proteoglycans and suppress cell division of fetal rat chondrocytes in monolayer culture.
    Miller RP; Husain M; Lohin S
    J Cell Physiol; 1979 Jul; 100(1):63-76. PubMed ID: 224070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological transformation of Chinese hamster cells by acylpeptides, inhibitors of cAMP phosphodiesterase, produced by Bacillus subtilis.
    Hosono K; Suzuki H
    J Biol Chem; 1985 Sep; 260(20):11252-5. PubMed ID: 2993305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine/cyclic AMP/Ca2+ induces arrhythmias in the healthy pig heart.
    Podzuweit T; Louw GC; Shanley BC
    Adv Myocardiol; 1980; 2():133-43. PubMed ID: 6252585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cAMP and related compounds on newt epidermal cell migration both in vivo and in vitro.
    Dunlap MK; Donaldson DJ
    J Exp Zool; 1980 Apr; 212(1):13-9. PubMed ID: 6251154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variant of S49 mouse lymphoma cells with enhanced secretion of cyclic AMP.
    Steinberg RA; Steinberg MG; van Daalen Wetters T
    J Cell Physiol; 1979 Sep; 100(3):579-88. PubMed ID: 226556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of reverse transformation and normal cell cycle regulation by dibutyryl cAMP in a chemically transformed cell line.
    Wang YC; Rao PN
    J Cell Physiol; 1983 Jun; 115(3):255-9. PubMed ID: 6304118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium butyrate on S-100 protein levels and the cAMP response.
    Hirschfeld A; Bressler J
    J Cell Physiol; 1987 Oct; 133(1):158-62. PubMed ID: 2822731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrate differentially regulates cytokines and proliferation in porcine peripheral blood mononuclear cells.
    Weber TE; Kerr BJ
    Vet Immunol Immunopathol; 2006 Sep; 113(1-2):139-47. PubMed ID: 16725211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cell division and of tyrosinase in B16 melanoma cells by imidazole: a possible role for the concept of metabolite gene regulation in mammalian cells.
    Montefiori DC; Kline EL
    J Cell Physiol; 1981 Feb; 106(2):283-91. PubMed ID: 6260821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells.
    Russell JL; Steinberg RA
    J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.