These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20166221)

  • 1. Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials.
    Mirnajafi A; Zubiate B; Sacks MS
    J Biomed Mater Res A; 2010 Jul; 94(1):205-13. PubMed ID: 20166221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials.
    Mirnajafi A; Raymer J; Scott MJ; Sacks MS
    Biomaterials; 2005 Mar; 26(7):795-804. PubMed ID: 15350785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of heterograft heart valve biomaterials to moderate cyclic loading.
    Sun W; Sacks M; Fulchiero G; Lovekamp J; Vyavahare N; Scott M
    J Biomed Mater Res A; 2004 Jun; 69(4):658-69. PubMed ID: 15162408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on the Biomechanical Effects of Fatigue on the Porcine Bioprosthetic Heart Valve.
    Sacks MS
    J Long Term Eff Med Implants; 2017; 27(2-4):181-197. PubMed ID: 29773039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biomechanical effects of fatigue on the porcine bioprosthetic heart valve.
    Sacks MS
    J Long Term Eff Med Implants; 2001; 11(3-4):231-47. PubMed ID: 11921666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
    Zhang W; Motiwale S; Hsu MC; Sacks MS
    J Mech Behav Biomed Mater; 2021 Nov; 123():104745. PubMed ID: 34482092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation.
    Sacks MS; Mirnajafi A; Sun W; Schmidt P
    Expert Rev Med Devices; 2006 Nov; 3(6):817-34. PubMed ID: 17280546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue-induced damage in glutaraldehyde-preserved heart valve tissue.
    Broom ND
    J Thorac Cardiovasc Surg; 1978 Aug; 76(2):202-11. PubMed ID: 98672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set.
    Zhang W; Sacks MS
    J Mech Behav Biomed Mater; 2017 Nov; 75():336-350. PubMed ID: 28780254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading.
    Sellaro TL; Hildebrand D; Lu Q; Vyavahare N; Scott M; Sacks MS
    J Biomed Mater Res A; 2007 Jan; 80(1):194-205. PubMed ID: 17041913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading.
    Wells SM; Sacks MS
    Biomaterials; 2002 Jun; 23(11):2389-99. PubMed ID: 12013187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve.
    Gloeckner DC; Billiar KL; Sacks MS
    ASAIO J; 1999; 45(1):59-63. PubMed ID: 9952009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.
    Murdock K; Martin C; Sun W
    J Mech Behav Biomed Mater; 2018 Jan; 77():148-156. PubMed ID: 28915471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves.
    McGregor C; Byrne G; Rahmani B; Chisari E; Kyriakopoulou K; Burriesci G
    Acta Biomater; 2016 Sep; 41():204-209. PubMed ID: 27268480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
    Sulejmani F; Caballero A; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2019 Sep; 97():159-170. PubMed ID: 31125889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic simulation pericardial bioprosthetic heart valve function.
    Kim H; Lu J; Sacks MS; Chandran KB
    J Biomech Eng; 2006 Oct; 128(5):717-24. PubMed ID: 16995758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.
    Soares JS; Feaver KR; Zhang W; Kamensky D; Aggarwal A; Sacks MS
    Cardiovasc Eng Technol; 2016 Dec; 7(4):309-351. PubMed ID: 27507280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related enhanced degeneration of bioprosthetic valves due to leaflet calcification, tissue crosslinking, and structural changes.
    Xue Y; Kossar AP; Abramov A; Frasca A; Sun M; Zyablitskaya M; Paik D; Kalfa D; Della Barbera M; Thiene G; Kozaki S; Kawashima T; Gorman JH; Gorman RC; Gillespie MJ; Carreon CK; Sanders SP; Levy RJ; Ferrari G
    Cardiovasc Res; 2023 Mar; 119(1):302-315. PubMed ID: 35020813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.
    Sritharan D; Fathi P; Weaver JD; Retta SM; Wu C; Duraiswamy N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):351-364. PubMed ID: 29948838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.