These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 20166222)
1. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. Feng C; Xu YM; Fu Q; Zhu WD; Cui L; Chen J J Biomed Mater Res A; 2010 Jul; 94(1):317-25. PubMed ID: 20166222 [TBL] [Abstract][Full Text] [Related]
2. Effect of scaffold architecture and pore size on smooth muscle cell growth. Lee M; Wu BM; Dunn JC J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081 [TBL] [Abstract][Full Text] [Related]
3. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
4. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. Pariente JL; Kim BS; Atala A J Urol; 2002 Apr; 167(4):1867-71. PubMed ID: 11912450 [TBL] [Abstract][Full Text] [Related]
5. [Preparation and biocompatibility evaluation of novel cartilage acellular matrix sponge]. Liu T; Tan B; Luo J; Deng L; Xie H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Aug; 23(8):1002-6. PubMed ID: 19728622 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Kemppainen JM; Hollister SJ J Biomed Mater Res A; 2010 Jul; 94(1):9-18. PubMed ID: 20091702 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Sharifpoor S; Simmons CA; Labow RS; Paul Santerre J Biomaterials; 2011 Jul; 32(21):4816-29. PubMed ID: 21463894 [TBL] [Abstract][Full Text] [Related]
9. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. Jin CZ; Choi BH; Park SR; Min BH J Biomed Mater Res A; 2010 Mar; 92(4):1567-77. PubMed ID: 19437434 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
11. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro]. Han P; Yang Z; Zhi W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1366-70. PubMed ID: 18277686 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Liu Y; Bharadwaj S; Lee SJ; Atala A; Zhang Y Biomaterials; 2009 Aug; 30(23-24):3865-73. PubMed ID: 19427687 [TBL] [Abstract][Full Text] [Related]
13. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
14. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
15. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Zhang L; Ao Q; Wang A; Lu G; Kong L; Gong Y; Zhao N; Zhang X J Biomed Mater Res A; 2006 May; 77(2):277-84. PubMed ID: 16400655 [TBL] [Abstract][Full Text] [Related]
16. Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model. Lai JY; Chang PY; Lin JN J Pediatr Surg; 2005 Dec; 40(12):1869-73. PubMed ID: 16338308 [TBL] [Abstract][Full Text] [Related]
17. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
18. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells. Danielsson C; Ruault S; Basset-Dardare A; Frey P Biomaterials; 2006 Mar; 27(7):1054-60. PubMed ID: 16174527 [TBL] [Abstract][Full Text] [Related]
19. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
20. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Murphy CM; Haugh MG; O'Brien FJ Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]