These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 2016644)

  • 21. Behavioral deficits induced by local injection of bicuculline and muscimol into the primate motor and premotor cortex.
    Matsumura M; Sawaguchi T; Oishi T; Ueki K; Kubota K
    J Neurophysiol; 1991 Jun; 65(6):1542-53. PubMed ID: 1875261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey.
    Perlmutter SI; Maier MA; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2475-94. PubMed ID: 9819257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of cerebellum and basal ganglia in initiation and control of movements.
    Brooks VB
    Can J Neurol Sci; 1975 Aug; 2(3):265-77. PubMed ID: 809128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey.
    Georgopoulos AP; DeLong MR; Crutcher MD
    J Neurosci; 1983 Aug; 3(8):1586-98. PubMed ID: 6875658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Participation of caudal fastigial nucleus in smooth pursuit eye movements. II. Effects of muscimol inactivation.
    Robinson FR; Straube A; Fuchs AF
    J Neurophysiol; 1997 Aug; 78(2):848-59. PubMed ID: 9307118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The globus pallidus pars interna in goal-oriented and routine behaviors: Resolving a long-standing paradox.
    Piron C; Kase D; Topalidou M; Goillandeau M; Orignac H; N'Guyen TH; Rougier N; Boraud T
    Mov Disord; 2016 Aug; 31(8):1146-54. PubMed ID: 26900137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey.
    Nambu A; Tokuno H; Hamada I; Kita H; Imanishi M; Akazawa T; Ikeuchi Y; Hasegawa N
    J Neurophysiol; 2000 Jul; 84(1):289-300. PubMed ID: 10899204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trained slow tracking. I. Muscular production of wrist movement.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1213-27. PubMed ID: 4078615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the basal ganglia in controlling a movement initiated by a visually presented cue.
    Aldridge JW; Anderson RJ; Murphy JT
    Brain Res; 1980 Jun; 192(1):3-16. PubMed ID: 6769544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Step-tracking movements of the wrist. III. Influence of changes in load on patterns of muscle activity.
    Hoffman DS; Strick PL
    J Neurosci; 1993 Dec; 13(12):5212-27. PubMed ID: 8254369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement.
    Suzuki M; Shiller DM; Gribble PL; Ostry DJ
    Exp Brain Res; 2001 Sep; 140(2):171-81. PubMed ID: 11521149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primate rubromotoneuronal cells: parametric relations and contribution to wrist movement.
    Mewes K; Cheney PD
    J Neurophysiol; 1994 Jul; 72(1):14-30. PubMed ID: 7965000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements.
    van Donkelaar P; Stein JF; Passingham RE; Miall RC
    J Neurophysiol; 2000 May; 83(5):2780-90. PubMed ID: 10805676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Step-tracking movements of the wrist. IV. Muscle activity associated with movements in different directions.
    Hoffman DS; Strick PL
    J Neurophysiol; 1999 Jan; 81(1):319-33. PubMed ID: 9914292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity of neurons in putamen during active and passive movements of wrist.
    Liles SL
    J Neurophysiol; 1985 Jan; 53(1):217-36. PubMed ID: 3973659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferential relation of pallidal neurons to ballistic movements.
    Mink JW; Thach WT
    Brain Res; 1987 Aug; 417(2):393-8. PubMed ID: 3651822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles.
    Wetts R; Kalaska JF; Smith AM
    J Neurophysiol; 1985 Aug; 54(2):231-44. PubMed ID: 3928831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor sequences and the basal ganglia: kinematics, not habits.
    Desmurget M; Turner RS
    J Neurosci; 2010 Jun; 30(22):7685-90. PubMed ID: 20519543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.