BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20166713)

  • 1. Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process.
    Adolphs J; Müh F; Madjet Mel-A; am Busch MS; Renger T
    J Am Chem Soc; 2010 Mar; 132(10):3331-43. PubMed ID: 20166713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quest for energy traps in the CP43 antenna of photosystem II.
    Müh F; Plöckinger M; Ortmayer H; Schmidt Am Busch M; Lindorfer D; Adolphs J; Renger T
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):286-300. PubMed ID: 26070392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based identification of energy sinks in plant light-harvesting complex II.
    Müh F; Madjet Mel-A; Renger T
    J Phys Chem B; 2010 Oct; 114(42):13517-35. PubMed ID: 20886872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model.
    Raszewski G; Diner BA; Schlodder E; Renger T
    Biophys J; 2008 Jul; 95(1):105-19. PubMed ID: 18339736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of non-conservative circular dichroism of the CP29 antenna complex of photosystem II.
    Lindorfer D; Müh F; Renger T
    Phys Chem Chem Phys; 2017 Mar; 19(11):7524-7536. PubMed ID: 28247880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II.
    Renger T; Madjet ME; Knorr A; Müh F
    J Plant Physiol; 2011 Aug; 168(12):1497-509. PubMed ID: 21330003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light harvesting in photosystem I: modeling based on the 2.5-A structure of photosystem I from Synechococcus elongatus.
    Byrdin M; Jordan P; Krauss N; Fromme P; Stehlik D; Schlodder E
    Biophys J; 2002 Jul; 83(1):433-57. PubMed ID: 12080132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light harvesting in photosystem I supercomplexes.
    Melkozernov AN; Barber J; Blankenship RE
    Biochemistry; 2006 Jan; 45(2):331-45. PubMed ID: 16401064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.
    Reppert M; Zazubovich V; Dang NC; Seibert M; Jankowiak R
    J Phys Chem B; 2008 Aug; 112(32):9934-47. PubMed ID: 18642950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I.
    Morosinotto T; Mozzo M; Bassi R; Croce R
    J Biol Chem; 2005 May; 280(21):20612-9. PubMed ID: 15788395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II.
    Müh F; Madjet Mel-A; Renger T
    Photosynth Res; 2012 Mar; 111(1-2):87-101. PubMed ID: 21809112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II.
    Jurinovich S; Viani L; Prandi IG; Renger T; Mennucci B
    Phys Chem Chem Phys; 2015 Jun; 17(22):14405-16. PubMed ID: 25872495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculation of electronic spectra of light-harvesting complex II.
    König C; Neugebauer J
    Phys Chem Chem Phys; 2011 Jun; 13(22):10475-90. PubMed ID: 21369568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assignment of the Qy absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure.
    Yin S; Dahlbom MG; Canfield PJ; Hush NS; Kobayashi R; Reimers JR
    J Phys Chem B; 2007 Aug; 111(33):9923-30. PubMed ID: 17672486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of optical spectra of the light-harvesting CP29 antenna complex of photosystem II--part II.
    Feng X; Kell A; Pieper J; Jankowiak R
    J Phys Chem B; 2013 Jun; 117(22):6593-602. PubMed ID: 23662835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.
    Adolphs J; Renger T
    Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignments.
    Reppert M; Acharya K; Neupane B; Jankowiak R
    J Phys Chem B; 2010 Sep; 114(36):11884-98. PubMed ID: 20722360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red chlorophylls in the exciton model of photosystem I.
    Vaitekonis S; Trinkunas G; Valkunas L
    Photosynth Res; 2005 Nov; 86(1-2):185-201. PubMed ID: 16172938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.
    Molotokaite E; Remelli W; Casazza AP; Zucchelli G; Polli D; Cerullo G; Santabarbara S
    J Phys Chem B; 2017 Oct; 121(42):9816-9830. PubMed ID: 28967751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.