These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 20166730)

  • 1. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering. Combinatorial library determination of optimal sequences.
    Krezel A; Kopera E; Protas AM; Poznański J; Wysłouch-Cieszyńska A; Bal W
    J Am Chem Soc; 2010 Mar; 132(10):3355-66. PubMed ID: 20166730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism.
    Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W
    Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: active sequence optimization.
    Protas AM; Ariani HH; Bonna A; Polkowska-Nowakowska A; Poznański J; Bal W
    J Inorg Biochem; 2013 Oct; 127():99-106. PubMed ID: 23973681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.
    Protas AM; Bonna A; Kopera E; Bal W
    J Inorg Biochem; 2011 Jan; 105(1):10-6. PubMed ID: 21134597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial optimization of the DNA cleaving Ni(II) x Xaa-Xaa-His metallotripeptide domain.
    Huang X; Pieczko ME; Long EC
    Biochemistry; 1999 Feb; 38(7):2160-6. PubMed ID: 10026300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of D-amino acid substitutions on Ni(II)-assisted peptide bond hydrolysis.
    Ariani HH; Polkowska-Nowakowska A; Bal W
    Inorg Chem; 2013 Mar; 52(5):2422-31. PubMed ID: 23427909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues.
    Krezel A; Mylonas M; Kopera E; Bal W
    Acta Biochim Pol; 2006; 53(4):721-7. PubMed ID: 17117212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel(II) binding to Cap43 protein fragments.
    Zoroddu MA; Peana M; Kowalik-Jankowska T; Kozlowski H; Costa M
    J Inorg Biochem; 2004 Jun; 98(6):931-9. PubMed ID: 15149799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual catalytic role of the metal ion in nickel-assisted peptide bond hydrolysis.
    Podobas EI; Bonna A; Polkowska-Nowakowska A; Bal W
    J Inorg Biochem; 2014 Jul; 136():107-14. PubMed ID: 24726232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries.
    Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM
    Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adduction of the chloroform metabolite phosgene to lysine residues of human histone H2B.
    Fabrizi L; Taylor GW; Cañas B; Boobis AR; Edwards RJ
    Chem Res Toxicol; 2003 Mar; 16(3):266-75. PubMed ID: 12641426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid sequence of a ferredoxin from Bumilleriopsis filiformis, a yellow-green alga: relationship with red algae, protoflorideophyceae, and filamentous blue-green algae.
    Inoue K; Hase T; Böger P; Matsubara H
    J Biochem; 1983 Nov; 94(5):1451-5. PubMed ID: 6418731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-bead cyclization in a combinatorial library of 15,625 octapeptides.
    Fluxa VS; Reymond JL
    Bioorg Med Chem; 2009 Feb; 17(3):1018-25. PubMed ID: 18262791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monkey pepsinogens and pepsins. IV. The amino acid sequence of the activation peptide segment of Japanese monkey pepsinogen.
    Kageyama T; Takahashi K
    J Biochem; 1980 Jul; 88(1):9-16. PubMed ID: 6773933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and metal binding of novel Pseudo- oligopeptides containing two phosphinic acid groups.
    Ye Y; Liu M; Kao JL; Marshall GR
    Biopolymers; 2008 Jan; 89(1):72-85. PubMed ID: 17910046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined use of platinum(II) complexes and palladium(II) complexes for selective cleavage of peptides and proteins.
    Milović NM; Dutca LM; Kostić NM
    Inorg Chem; 2003 Jun; 42(13):4036-45. PubMed ID: 12817959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model studies on iTRAQ modification of peptides: sequence-dependent reaction specificity.
    Wiktorowicz JE; English RD; Wu Z; Kurosky A
    J Proteome Res; 2012 Mar; 11(3):1512-20. PubMed ID: 22335824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C2H2 zinc finger transcription factors are likely targets for Ni(II) toxicity.
    Kurowska E; Sasin-Kurowska J; Bonna A; Grynberg M; Poznański J; Knizewski L; Ginalski K; Bal W
    Metallomics; 2011 Nov; 3(11):1227-31. PubMed ID: 21869994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-penetrating peptide-conjugated XIAP-inhibitory cyclic hexapeptides enter into Jurkat cells and inhibit cell proliferation.
    Sasaki Y; Minamizawa M; Ambo A; Sugawara S; Ogawa Y; Nitta K
    FEBS J; 2008 Dec; 275(23):6011-21. PubMed ID: 19016849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-specific Cu(II)-dependent peptide bond hydrolysis: similarities and differences with the Ni(II)-dependent reaction.
    Belczyk-Ciesielska A; Zawisza IA; Mital M; Bonna A; Bal W
    Inorg Chem; 2014 May; 53(9):4639-46. PubMed ID: 24735221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.