These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20166894)

  • 1. Formation of nitric oxide, ethyl nitrite and an oxathiolone derivative of caffeic acid in a mixture of saliva and white wine.
    Takahama U; Tanaka M; Hirota S
    Free Radic Res; 2010 Mar; 44(3):293-303. PubMed ID: 20166894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of nitric oxide-derived reactive nitrogen species in human oral cavity and their scavenging by salivary redox components.
    Takahama U; Hirota S; Oniki T
    Free Radic Res; 2005 Jul; 39(7):737-45. PubMed ID: 16036353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red wine-dependent reduction of nitrite to nitric oxide in the stomach.
    Gago B; Lundberg JO; Barbosa RM; Laranjinha J
    Free Radic Biol Med; 2007 Nov; 43(9):1233-42. PubMed ID: 17893036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    Chem Res Toxicol; 2012 Jan; 25(1):207-15. PubMed ID: 22145785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin-dependent scavenging of reactive nitrogen species derived from nitric oxide and nitrite in the human oral cavity: interaction of quercetin with salivary redox components.
    Takahama U; Hirota S; Oniki T
    Arch Oral Biol; 2006 Aug; 51(8):629-39. PubMed ID: 16581012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of ethyl alcohol to ethyl nitrite in acidified saliva: possibility of its occurrence in the stomach.
    Takahama U; Tanaka M; Hirota S
    Arch Biochem Biophys; 2008 Jul; 475(2):135-9. PubMed ID: 18471427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group?
    Peri L; Pietraforte D; Scorza G; Napolitano A; Fogliano V; Minetti M
    Free Radic Biol Med; 2005 Sep; 39(5):668-81. PubMed ID: 16085185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction.
    Takahama U; Yamamoto A; Hirota S; Oniki T
    J Agric Food Chem; 2003 Sep; 51(20):6014-20. PubMed ID: 13129310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH on nitrite-induced formation of reactive nitrogen oxide species and their scavenging by phenolic antioxidants in human oral cavity.
    Takahama U; Hirota S; Kawagishi S
    Free Radic Res; 2009 Mar; 43(3):250-61. PubMed ID: 19169919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of an adduct by clenbuterol, a beta-adrenoceptor agonist drug, and serum albumin in human saliva at the acidic pH of the stomach: evidence for an aryl radical-based process.
    Pietraforte D; Brambilla G; Camerini S; Scorza G; Peri L; Loizzo A; Crescenzi M; Minetti M
    Free Radic Biol Med; 2008 Jul; 45(2):124-35. PubMed ID: 18440320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of nitric oxide and its derivatives in human mixed saliva and acidified saliva.
    Takahama U; Hirota S; Takayuki O
    Methods Enzymol; 2008; 440():381-96. PubMed ID: 18423231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties.
    da Cunha FM; Duma D; Assreuy J; Buzzi FC; Niero R; Campos MM; Calixto JB
    Free Radic Res; 2004 Nov; 38(11):1241-53. PubMed ID: 15621702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiocyanate cannot inhibit the formation of reactive nitrogen species in the human oral cavity in the presence of high concentrations of nitrite: detection of reactive nitrogen species with 4,5-diaminofluorescein.
    Takahama U; Hirota S; Oniki T
    Chem Res Toxicol; 2006 Aug; 19(8):1066-73. PubMed ID: 16918246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salivary nitrate--an ecological factor in reducing oral acidity.
    Li H; Thompson I; Carter P; Whiteley A; Bailey M; Leifert C; Killham K
    Oral Microbiol Immunol; 2007 Feb; 22(1):67-71. PubMed ID: 17241173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation.
    Marteus H; Törnberg DC; Weitzberg E; Schedin U; Alving K
    Thorax; 2005 Mar; 60(3):219-25. PubMed ID: 15741439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation.
    Rocha BS; Gago B; Barbosa RM; Laranjinha J
    Toxicology; 2009 Nov; 265(1-2):41-8. PubMed ID: 19778575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intragastric generation of antimicrobial nitrogen oxides from saliva--physiological and therapeutic considerations.
    Björne H; Weitzberg E; Lundberg JO
    Free Radic Biol Med; 2006 Nov; 41(9):1404-12. PubMed ID: 17023267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin-dependent inhibition of nitration induced by peroxidase/H2O2/nitrite systems in human saliva and characterization of an oxidation product of quercetin formed during the inhibition.
    Hirota S; Takahama U; Ly TN; Yamauchi R
    J Agric Food Chem; 2005 May; 53(9):3265-72. PubMed ID: 15853358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of nitric oxide generation from salivary nitrite in human gastric juice.
    Iijima K; Fyfe V; McColl KE
    Scand J Gastroenterol; 2003 Mar; 38(3):246-52. PubMed ID: 12737438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the magnitude and rate of nitric oxide production from nitrite in biological systems.
    Samouilov A; Kuppusamy P; Zweier JL
    Arch Biochem Biophys; 1998 Sep; 357(1):1-7. PubMed ID: 9721176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.