These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20166997)

  • 21. Applications of high-throughput ADME in drug discovery.
    Kassel DB
    Curr Opin Chem Biol; 2004 Jun; 8(3):339-45. PubMed ID: 15183334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice.
    Johnson TN; Rostami-Hodjegan A
    Paediatr Anaesth; 2011 Mar; 21(3):291-301. PubMed ID: 20497354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro- and nanofluidic systems for high-throughput biological screening.
    Hong J; Edel JB; deMello AJ
    Drug Discov Today; 2009 Feb; 14(3-4):134-46. PubMed ID: 18983933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening.
    Kohl Y; Biehl M; Spring S; Hesler M; Ogourtsov V; Todorovic M; Owen J; Elje E; Kopecka K; Moriones OH; Bastús NG; Simon P; Dubaj T; Rundén-Pran E; Puntes V; William N; von Briesen H; Wagner S; Kapur N; Mariussen E; Nelson A; Gabelova A; Dusinska M; Velten T; Knoll T
    Small; 2021 Apr; 17(15):e2006012. PubMed ID: 33458959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of intrinsic clearance for prediction of human hepatic clearance.
    Chao P; Uss AS; Cheng KC
    Expert Opin Drug Metab Toxicol; 2010 Feb; 6(2):189-98. PubMed ID: 20073997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.
    Sung JH; Srinivasan B; Esch MB; McLamb WT; Bernabini C; Shuler ML; Hickman JJ
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1225-39. PubMed ID: 24951471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiologically based pharmacokinetic models: integration of in silico approaches with micro cell culture analogues.
    Chen A; Yarmush ML; Maguire T
    Curr Drug Metab; 2012 Jul; 13(6):863-80. PubMed ID: 22571482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From in vivo to in vitro/in silico ADME: progress and challenges.
    Van de Waterbeemd H
    Expert Opin Drug Metab Toxicol; 2005 Jun; 1(1):1-4. PubMed ID: 16922647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The emerging role of physiologically based pharmacokinetic modelling in solid drug nanoparticle translation.
    Siccardi M; Rannard S; Owen A
    Adv Drug Deliv Rev; 2018 Jun; 131():116-121. PubMed ID: 29959958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.
    Poulin P
    J Pharm Sci; 2015 Jul; 104(7):2359-68. PubMed ID: 25943586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting human pharmacokinetics from preclinical data.
    Poggesi I
    Curr Opin Drug Discov Devel; 2004 Jan; 7(1):100-11. PubMed ID: 14982153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional pharmacokinetic analogs for physiologically based pharmacokinetic (PBPK) model evaluation.
    Ellison CA
    Regul Toxicol Pharmacol; 2018 Nov; 99():61-77. PubMed ID: 30201539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips.
    Herland A; Maoz BM; Das D; Somayaji MR; Prantil-Baun R; Novak R; Cronce M; Huffstater T; Jeanty SSF; Ingram M; Chalkiadaki A; Benson Chou D; Marquez S; Delahanty A; Jalili-Firoozinezhad S; Milton Y; Sontheimer-Phelps A; Swenor B; Levy O; Parker KK; Przekwas A; Ingber DE
    Nat Biomed Eng; 2020 Apr; 4(4):421-436. PubMed ID: 31988459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical Nanoparticles.
    Li M; Zou P; Tyner K; Lee S
    AAPS J; 2017 Jan; 19(1):26-42. PubMed ID: 27834047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans.
    Valic MS; Zheng G
    Theranostics; 2019; 9(11):3365-3387. PubMed ID: 31244958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microprinting of liver micro-organ for drug metabolism study.
    Chang RC; Emami K; Jeevarajan A; Wu H; Sun W
    Methods Mol Biol; 2011; 671():219-38. PubMed ID: 20967633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies.
    Phillips JA; Grandhi TSP; Davis M; Gautier JC; Hariparsad N; Keller D; Sura R; Van Vleet TR
    Lab Chip; 2020 Feb; 20(3):468-476. PubMed ID: 31989145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HPLC-MS/MS in drug metabolism and pharmacokinetic screening.
    Hsieh Y
    Expert Opin Drug Metab Toxicol; 2008 Jan; 4(1):93-101. PubMed ID: 18370861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a microscale cell culture analog to probe naphthalene toxicity.
    Viravaidya K; Sin A; Shuler ML
    Biotechnol Prog; 2004; 20(1):316-23. PubMed ID: 14763858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.