BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20167220)

  • 1. CAMBIUM, a process-based model of daily xylem development in Eucalyptus.
    Drew DM; Downes GM; Battaglia M
    J Theor Biol; 2010 May; 264(2):395-406. PubMed ID: 20167220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
    Lu S; Li L; Yi X; Joshi CP; Chiang VL
    J Exp Bot; 2008; 59(3):681-95. PubMed ID: 18281718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylem phenology and wood production: resolving the chicken-or-egg dilemma.
    Lupi C; Morin H; Deslauriers A; Rossi S
    Plant Cell Environ; 2010 Oct; 33(10):1721-30. PubMed ID: 20525004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of the cambial region in juvenile Eucalyptus grandis at three ages.
    Fiorani Celedon PA; de Andrade A; Meireles KG; Gallo de Carvalho MC; Caldas DG; Moon DH; Carneiro RT; Franceschini LM; Oda S; Labate CA
    Proteomics; 2007 Jun; 7(13):2258-74. PubMed ID: 17533644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical framework for modelling cambial surface evolution using a level set method.
    Sellier D; Plank MJ; Harrington JJ
    Ann Bot; 2011 Oct; 108(6):1001-11. PubMed ID: 21470972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages.
    Liu G; Wu Z; Luo J; Wang C; Shang X; Zhang G
    BMC Plant Biol; 2023 Oct; 23(1):500. PubMed ID: 37848837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.
    Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J
    Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple type of wood in two Early Devonian plants.
    Gerrienne P; Gensel PG; Strullu-Derrien C; Lardeux H; Steemans P; Prestianni C
    Science; 2011 Aug; 333(6044):837. PubMed ID: 21836008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone-mediated Stimulation of Secondary Xylem Proliferation in Stems.
    Agusti J
    Methods Mol Biol; 2017; 1544():21-26. PubMed ID: 28050825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density.
    Barotto AJ; Monteoliva S; Gyenge J; Martinez-Meier A; Fernandez ME
    Tree Physiol; 2018 Feb; 38(2):243-251. PubMed ID: 29177476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-annual cambial activity and carbon availability in stem of poplar.
    Deslauriers A; Giovannelli A; Rossi S; Castro G; Fragnelli G; Traversi L
    Tree Physiol; 2009 Oct; 29(10):1223-35. PubMed ID: 19696052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.
    Obudulu O; Bygdell J; Sundberg B; Moritz T; Hvidsten TR; Trygg J; Wingsle G
    BMC Genomics; 2016 Feb; 17():119. PubMed ID: 26887814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First insights into the functional role of vasicentric tracheids and parenchyma in eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety?
    Barotto AJ; Fernandez ME; Gyenge J; Meyra A; Martinez-Meier A; Monteoliva S
    Tree Physiol; 2016 Dec; 36(12):1485-1497. PubMed ID: 27614358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes.
    Ployet R; Veneziano Labate MT; Regiani Cataldi T; Christina M; Morel M; San Clemente H; Denis M; Favreau B; Tomazello Filho M; Laclau JP; Labate CA; Chaix G; Grima-Pettenati J; Mounet F
    New Phytol; 2019 Jul; 223(2):766-782. PubMed ID: 30887522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach.
    Du J; Xie HL; Zhang DQ; He XQ; Wang MJ; Li YZ; Cui KM; Lu MZ
    Proteomics; 2006 Feb; 6(3):881-95. PubMed ID: 16385474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers.
    Qiu D; Wilson IW; Gan S; Washusen R; Moran GF; Southerton SG
    New Phytol; 2008; 179(1):94-103. PubMed ID: 18422902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial wood allocation in Schizolobium parahyba.
    Williamson GB; Wiemann MC; Geaghan JP
    Am J Bot; 2012 Jun; 99(6):1010-9. PubMed ID: 22575368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis.
    Brown K; Takawira LT; O'Neill MM; Mizrachi E; Myburg AA; Hussey SG
    New Phytol; 2019 Sep; 223(4):1937-1951. PubMed ID: 31063599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relevance of xylem network structure for plant hydraulic efficiency and safety.
    Loepfe L; Martinez-Vilalta J; Piñol J; Mencuccini M
    J Theor Biol; 2007 Aug; 247(4):788-803. PubMed ID: 17509617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.