These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 20167222)
1. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. Shen HS J Theor Biol; 2010 May; 264(2):386-94. PubMed ID: 20167222 [TBL] [Abstract][Full Text] [Related]
2. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Shen HS Biomech Model Mechanobiol; 2010 Jun; 9(3):345-57. PubMed ID: 19941152 [TBL] [Abstract][Full Text] [Related]
3. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Gao Y; Lei FM Biochem Biophys Res Commun; 2009 Sep; 387(3):467-71. PubMed ID: 19615341 [TBL] [Abstract][Full Text] [Related]
4. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations. Daneshmand F; Ghavanloo E; Amabili M J Biomech; 2011 Jul; 44(10):1960-6. PubMed ID: 21632054 [TBL] [Abstract][Full Text] [Related]
6. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. Sahmani S; Aghdam MM J Theor Biol; 2017 Jun; 422():59-71. PubMed ID: 28427819 [TBL] [Abstract][Full Text] [Related]
7. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects. Daneshmand F; Farokhi H; Amabili M Math Biosci; 2014 Jun; 252():67-82. PubMed ID: 24657874 [TBL] [Abstract][Full Text] [Related]
8. Vibration and length-dependent flexural rigidity of protein microtubules using higher order shear deformation theory. Tounsi A; Heireche H; Benhassaini H; Missouri M J Theor Biol; 2010 Sep; 266(2):250-5. PubMed ID: 20609368 [TBL] [Abstract][Full Text] [Related]
9. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory. Beni YT; Zeverdejani MK; Mehralian F Math Biosci; 2017 Oct; 292():18-29. PubMed ID: 28709975 [TBL] [Abstract][Full Text] [Related]
10. A mechanics model of microtubule buckling in living cells. Li T J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear Buckling Behavior of Spiral Corrugated Sandwich FGM Cylindrical Shells Surrounded by an Elastic Medium. Tho Hung V; Thuy Dong D; Thi Phuong N; Ngoc Ly L; Quang Minh T; Trung NT; Hoai Nam V Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344545 [TBL] [Abstract][Full Text] [Related]
12. Orthotropic elastic shell model for buckling of microtubules. Wang CY; Ru CQ; Mioduchowski A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):052901. PubMed ID: 17279958 [TBL] [Abstract][Full Text] [Related]
13. An efficient size-dependent shear deformable shell model and molecular dynamics simulation for axial instability analysis of silicon nanoshells. Sahmani S; Aghdam MM; Bahrami M J Mol Graph Model; 2017 Oct; 77():263-279. PubMed ID: 28903086 [TBL] [Abstract][Full Text] [Related]
14. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Kurachi M; Hoshi M; Tashiro H Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138 [TBL] [Abstract][Full Text] [Related]
15. Temperature dependence of the flexural rigidity of single microtubules. Kawaguchi K; Ishiwata S; Yamashita T Biochem Biophys Res Commun; 2008 Feb; 366(3):637-42. PubMed ID: 18068120 [TBL] [Abstract][Full Text] [Related]
16. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103 [TBL] [Abstract][Full Text] [Related]
17. Buckling of Microtubules on a 2D Elastic Medium. Kabir AM; Inoue D; Afrin T; Mayama H; Sada K; Kakugo A Sci Rep; 2015 Nov; 5():17222. PubMed ID: 26596905 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. Sahmani S; Aghdam MM J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule. Baninajjaryan A; Tadi Beni Y J Theor Biol; 2015 Oct; 382():111-21. PubMed ID: 26159811 [TBL] [Abstract][Full Text] [Related]
20. Stability Analysis of Shear Deformable Inhomogeneous Nanocomposite Cylindrical Shells under Hydrostatic Pressure in Thermal Environment. Sofiyev AH; Fantuzzi N Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]