BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20167472)

  • 21. Msl1-mediated dimerization of the dosage compensation complex is essential for male X-chromosome regulation in Drosophila.
    Hallacli E; Lipp M; Georgiev P; Spielman C; Cusack S; Akhtar A; Kadlec J
    Mol Cell; 2012 Nov; 48(4):587-600. PubMed ID: 23084835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins.
    Park Y; Kelley RL; Oh H; Kuroda MI; Meller VH
    Science; 2002 Nov; 298(5598):1620-3. PubMed ID: 12446910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs.
    Samata M; Akhtar A
    Annu Rev Biochem; 2018 Jun; 87():323-350. PubMed ID: 29668306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation.
    Lee CG; Chang KA; Kuroda MI; Hurwitz J
    EMBO J; 1997 May; 16(10):2671-81. PubMed ID: 9184214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes.
    Marín I; Franke A; Bashaw GJ; Baker BS
    Nature; 1996 Sep; 383(6596):160-3. PubMed ID: 8774878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males.
    Birchler JA; Pal-Bhadra M; Bhadra U
    Genetica; 2003 Mar; 117(2-3):179-90. PubMed ID: 12723697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila.
    Schiemann AH; Li F; Weake VM; Belikoff EJ; Klemmer KC; Moore SA; Scott MJ
    BMC Mol Biol; 2010 Nov; 11():80. PubMed ID: 21062452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq.
    Straub T; Zabel A; Gilfillan GD; Feller C; Becker PB
    Genome Res; 2013 Mar; 23(3):473-85. PubMed ID: 23233545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex.
    Morales V; Straub T; Neumann MF; Mengus G; Akhtar A; Becker PB
    EMBO J; 2004 Jun; 23(11):2258-68. PubMed ID: 15141166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila.
    Mendjan S; Taipale M; Kind J; Holz H; Gebhardt P; Schelder M; Vermeulen M; Buscaino A; Duncan K; Mueller J; Wilm M; Stunnenberg HG; Saumweber H; Akhtar A
    Mol Cell; 2006 Mar; 21(6):811-23. PubMed ID: 16543150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.
    Akhtar A; Becker PB
    Mol Cell; 2000 Feb; 5(2):367-75. PubMed ID: 10882077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila.
    Dunlap D; Yokoyama R; Ling H; Sun HY; McGill K; Cugusi S; Lucchesi JC
    Nucleic Acids Res; 2012 Dec; 40(22):11281-91. PubMed ID: 23047951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm.
    Franke A; Dernburg A; Bashaw GJ; Baker BS
    Development; 1996 Sep; 122(9):2751-60. PubMed ID: 8787749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression analysis of the function of the male-specific lethal complex in Drosophila.
    Bhadra MP; Bhadra U; Kundu J; Birchler JA
    Genetics; 2005 Apr; 169(4):2061-74. PubMed ID: 15716510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities.
    Gu W; Wei X; Pannuti A; Lucchesi JC
    EMBO J; 2000 Oct; 19(19):5202-11. PubMed ID: 11013222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absence of X-chromosome dosage compensation in the primordial germ cells of Drosophila embryos.
    Ota R; Hayashi M; Morita S; Miura H; Kobayashi S
    Sci Rep; 2021 Mar; 11(1):4890. PubMed ID: 33649478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila.
    Bone JR; Lavender J; Richman R; Palmer MJ; Turner BM; Kuroda MI
    Genes Dev; 1994 Jan; 8(1):96-104. PubMed ID: 8288132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster.
    Hamada FN; Park PJ; Gordadze PR; Kuroda MI
    Genes Dev; 2005 Oct; 19(19):2289-94. PubMed ID: 16204180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parallel Universes for Models of X Chromosome Dosage Compensation in Drosophila: A Review.
    Birchler JA
    Cytogenet Genome Res; 2016; 148(1):52-67. PubMed ID: 27166165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The activation potential of MOF is constrained for dosage compensation.
    Prestel M; Feller C; Straub T; Mitlöhner H; Becker PB
    Mol Cell; 2010 Jun; 38(6):815-26. PubMed ID: 20620953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.