BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 20167474)

  • 21. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants.
    Werchan DM; Collins AG; Frank MJ; Amso D
    J Neurosci; 2016 Oct; 36(40):10314-10322. PubMed ID: 27707968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex.
    Shiner T; Symmonds M; Guitart-Masip M; Fleming SM; Friston KJ; Dolan RJ
    Cereb Cortex; 2015 Oct; 25(10):3629-39. PubMed ID: 25246512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prefrontal Cortical Projection Neurons Targeting Dorsomedial Striatum Control Behavioral Inhibition.
    Terra H; Bruinsma B; de Kloet SF; van der Roest M; Pattij T; Mansvelder HD
    Curr Biol; 2020 Nov; 30(21):4188-4200.e5. PubMed ID: 32888489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.
    Jarbo K; Verstynen TD
    J Neurosci; 2015 Mar; 35(9):3865-78. PubMed ID: 25740516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examining the genetic and neural components of cognitive flexibility using mice.
    Brigman JL; Powell EM; Mittleman G; Young JW
    Physiol Behav; 2012 Dec; 107(5):666-9. PubMed ID: 22234243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prefrontal Corticotropin-Releasing Factor (CRF) Neurons Act Locally to Modulate Frontostriatal Cognition and Circuit Function.
    Hupalo S; Martin AJ; Green RK; Devilbiss DM; Berridge CW
    J Neurosci; 2019 Mar; 39(11):2080-2090. PubMed ID: 30651328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculating consequences: brain systems that encode the causal effects of actions.
    Tanaka SC; Balleine BW; O'Doherty JP
    J Neurosci; 2008 Jun; 28(26):6750-5. PubMed ID: 18579749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between orbital prefrontal cortex and amygdala: advanced cognition, learned responses and instinctive behaviors.
    Murray EA; Wise SP
    Curr Opin Neurobiol; 2010 Apr; 20(2):212-20. PubMed ID: 20181474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural components underlying behavioral flexibility in human reversal learning.
    Ghahremani DG; Monterosso J; Jentsch JD; Bilder RM; Poldrack RA
    Cereb Cortex; 2010 Aug; 20(8):1843-52. PubMed ID: 19915091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nature of interactions involving prefrontal and striatal dopamine systems.
    Wilkinson LS
    J Psychopharmacol; 1997; 11(2):143-50. PubMed ID: 9208377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms.
    Rogers RD; Everitt BJ; Baldacchino A; Blackshaw AJ; Swainson R; Wynne K; Baker NB; Hunter J; Carthy T; Booker E; London M; Deakin JF; Sahakian BJ; Robbins TW
    Neuropsychopharmacology; 1999 Apr; 20(4):322-39. PubMed ID: 10088133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children.
    Dalmaz C; Barth B; Pokhvisneva I; Wang Z; Patel S; Quillfeldt JA; Mendonça Filho EJ; de Lima RMS; Arcego DM; Sassi RB; Hall GBC; Kobor MS; Meaney MJ; Silveira PP
    Neurobiol Learn Mem; 2021 Nov; 185():107509. PubMed ID: 34454100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prefrontal neuromodulation by nicotinic receptors for cognitive processes.
    dos Santos Coura R; Granon S
    Psychopharmacology (Berl); 2012 May; 221(1):1-18. PubMed ID: 22249358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting.
    Block AE; Dhanji H; Thompson-Tardif SF; Floresco SB
    Cereb Cortex; 2007 Jul; 17(7):1625-36. PubMed ID: 16963518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurogenetics and pharmacology of learning, motivation, and cognition.
    Frank MJ; Fossella JA
    Neuropsychopharmacology; 2011 Jan; 36(1):133-52. PubMed ID: 20631684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monkey brain activity modulated by reward preferences: a positron emission tomography study.
    Obayashi S; Nagai Y; Suhara T; Okauchi T; Inaji M; Iriki A; Maeda J
    Neurosci Res; 2009 Aug; 64(4):421-8. PubMed ID: 19416743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability.
    Armbruster DJ; Ueltzhöffer K; Basten U; Fiebach CJ
    J Cogn Neurosci; 2012 Dec; 24(12):2385-99. PubMed ID: 22905818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.