These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20167653)
1. Identification of dynamical hinge points of the L1 ligase molecular switch. Giambasu GM; Lee TS; Sosa CP; Robertson MP; Scott WG; York DM RNA; 2010 Apr; 16(4):769-80. PubMed ID: 20167653 [TBL] [Abstract][Full Text] [Related]
2. The structural basis of ribozyme-catalyzed RNA assembly. Robertson MP; Scott WG Science; 2007 Mar; 315(5818):1549-53. PubMed ID: 17363667 [TBL] [Abstract][Full Text] [Related]
3. Mapping L1 ligase ribozyme conformational switch. Giambaşu GM; Lee TS; Scott WG; York DM J Mol Biol; 2012 Oct; 423(1):106-22. PubMed ID: 22771572 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary optimization of a modular ligase ribozyme: a small catalytic unit and a hairpin motif masking an element that could form an inactive structure. Fujita Y; Furuta H; Ikawa Y Nucleic Acids Res; 2010 Jun; 38(10):3328-39. PubMed ID: 20110262 [TBL] [Abstract][Full Text] [Related]
5. Structure-guided engineering of the regioselectivity of RNA ligase ribozymes. Pitt JN; Ferré-D'Amaré AR J Am Chem Soc; 2009 Mar; 131(10):3532-40. PubMed ID: 19220054 [TBL] [Abstract][Full Text] [Related]
6. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. Krasovska MV; Sefcikova J; Spacková N; Sponer J; Walter NG J Mol Biol; 2005 Aug; 351(4):731-48. PubMed ID: 16045932 [TBL] [Abstract][Full Text] [Related]
7. Metal ion requirements for structure and catalysis of an RNA ligase ribozyme. Glasner ME; Bergman NH; Bartel DP Biochemistry; 2002 Jun; 41(25):8103-12. PubMed ID: 12069603 [TBL] [Abstract][Full Text] [Related]
8. Model for the Functional Active State of the TS Ribozyme from Molecular Simulation. Gaines CS; York DM Angew Chem Int Ed Engl; 2017 Oct; 56(43):13392-13395. PubMed ID: 28763583 [TBL] [Abstract][Full Text] [Related]
9. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Robertson MP; Ellington AD Nat Biotechnol; 1999 Jan; 17(1):62-6. PubMed ID: 9920271 [TBL] [Abstract][Full Text] [Related]
14. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Walton T; DasGupta S; Duzdevich D; Oh SS; Szostak JW Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5741-5748. PubMed ID: 32123094 [TBL] [Abstract][Full Text] [Related]
15. Systematic minimization of RNA ligase ribozyme through large-scale design-synthesis-sequence cycles. Nomura Y; Yokobayashi Y Nucleic Acids Res; 2019 Sep; 47(17):8950-8960. PubMed ID: 31504757 [TBL] [Abstract][Full Text] [Related]
16. Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. Matsumura S; Ohmori R; Saito H; Ikawa Y; Inoue T FEBS Lett; 2009 Sep; 583(17):2819-26. PubMed ID: 19631647 [TBL] [Abstract][Full Text] [Related]
17. Kinetic framework for ligation by an efficient RNA ligase ribozyme. Bergman NH; Johnston WK; Bartel DP Biochemistry; 2000 Mar; 39(11):3115-23. PubMed ID: 10715133 [TBL] [Abstract][Full Text] [Related]
18. Transition state stabilization by a catalytic RNA. Rupert PB; Massey AP; Sigurdsson ST; Ferré-D'Amaré AR Science; 2002 Nov; 298(5597):1421-4. PubMed ID: 12376595 [TBL] [Abstract][Full Text] [Related]
19. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Nandakumar J; Shuman S; Lima CD Cell; 2006 Oct; 127(1):71-84. PubMed ID: 17018278 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Shechner DM; Grant RA; Bagby SC; Koldobskaya Y; Piccirilli JA; Bartel DP Science; 2009 Nov; 326(5957):1271-5. PubMed ID: 19965478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]