BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20167706)

  • 21. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IFN unresponsiveness in LNCaP cells due to the lack of JAK1 gene expression.
    Dunn GP; Sheehan KC; Old LJ; Schreiber RD
    Cancer Res; 2005 Apr; 65(8):3447-53. PubMed ID: 15833880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state.
    Briscoe J; Rogers NC; Witthuhn BA; Watling D; Harpur AG; Wilks AF; Stark GR; Ihle JN; Kerr IM
    EMBO J; 1996 Feb; 15(4):799-809. PubMed ID: 8631301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia.
    Xiang Z; Zhao Y; Mitaksov V; Fremont DH; Kasai Y; Molitoris A; Ries RE; Miner TL; McLellan MD; DiPersio JF; Link DC; Payton JE; Graubert TA; Watson M; Shannon W; Heath SE; Nagarajan R; Mardis ER; Wilson RK; Ley TJ; Tomasson MH
    Blood; 2008 May; 111(9):4809-12. PubMed ID: 18160671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group.
    Hertzberg L; Vendramini E; Ganmore I; Cazzaniga G; Schmitz M; Chalker J; Shiloh R; Iacobucci I; Shochat C; Zeligson S; Cario G; Stanulla M; Strehl S; Russell LJ; Harrison CJ; Bornhauser B; Yoda A; Rechavi G; Bercovich D; Borkhardt A; Kempski H; te Kronnie G; Bourquin JP; Domany E; Izraeli S
    Blood; 2010 Feb; 115(5):1006-17. PubMed ID: 19965641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interleukin-6 and Interferon-α Signaling
    Danziger O; Pupko T; Bacharach E; Ehrlich M
    Front Immunol; 2018; 9():94. PubMed ID: 29441069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria.
    Daza-Cajigal V; Albuquerque AS; Young DF; Ciancanelli MJ; Moulding D; Angulo I; Jeanne-Julien V; Rosain J; Minskaia E; Casanova JL; Boisson-Dupuis S; Bustamante J; Randall RE; McHugh TD; Thrasher AJ; Burns SO
    Front Immunol; 2022; 13():888427. PubMed ID: 36159783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Jak1 Integrates Cytokine Sensing to Regulate Hematopoietic Stem Cell Function and Stress Hematopoiesis.
    Kleppe M; Spitzer MH; Li S; Hill CE; Dong L; Papalexi E; De Groote S; Bowman RL; Keller M; Koppikar P; Rapaport FT; Teruya-Feldstein J; Gandara J; Mason CE; Nolan GP; Levine RL
    Cell Stem Cell; 2017 Oct; 21(4):489-501.e7. PubMed ID: 28965767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity.
    Malakhova OA; Kim KI; Luo JK; Zou W; Kumar KG; Fuchs SY; Shuai K; Zhang DE
    EMBO J; 2006 Jun; 25(11):2358-67. PubMed ID: 16710296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations.
    Shin DS; Zaretsky JM; Escuin-Ordinas H; Garcia-Diaz A; Hu-Lieskovan S; Kalbasi A; Grasso CS; Hugo W; Sandoval S; Torrejon DY; Palaskas N; Rodriguez GA; Parisi G; Azhdam A; Chmielowski B; Cherry G; Seja E; Berent-Maoz B; Shintaku IP; Le DT; Pardoll DM; Diaz LA; Tumeh PC; Graeber TG; Lo RS; Comin-Anduix B; Ribas A
    Cancer Discov; 2017 Feb; 7(2):188-201. PubMed ID: 27903500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction in p48-ISGFgamma levels confers resistance to interferon-alpha2a in MHCC97 cells.
    Wu WZ; Sun HC; Gao YQ; Li Y; Wang L; Zhou K; Liu KD; Iliakis G; Tang ZY
    Oncology; 2004; 67(5-6):428-40. PubMed ID: 15714000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular genetic makeup of acute lymphoblastic leukemia.
    Mullighan CG
    Hematology Am Soc Hematol Educ Program; 2012; 2012():389-96. PubMed ID: 23233609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 6-Hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside potentiates the anti-proliferative effect of interferon α/β by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells.
    Wonganan O; He YJ; Shen XF; Wongkrajang K; Suksamrarn A; Zhang GL; Wang F
    Toxicol Appl Pharmacol; 2017 Dec; 336():31-39. PubMed ID: 29031523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
    Jeong EG; Kim MS; Nam HK; Min CK; Lee S; Chung YJ; Yoo NJ; Lee SH
    Clin Cancer Res; 2008 Jun; 14(12):3716-21. PubMed ID: 18559588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interleukin-7 signaling in human B cell precursor acute lymphoblastic leukemia cells and murine BAF3 cells involves activation of STAT1 and STAT5 mediated via the interleukin-7 receptor alpha chain.
    van der Plas DC; Smiers F; Pouwels K; Hoefsloot LH; Löwenberg B; Touw IP
    Leukemia; 1996 Aug; 10(8):1317-25. PubMed ID: 8709637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias.
    Kucine N; Marubayashi S; Bhagwat N; Papalexi E; Koppikar P; Sanchez Martin M; Dong L; Tallman MS; Paietta E; Wang K; He J; Lipson D; Stephens P; Miller V; Rowe JM; Teruya-Feldstein J; Mullighan CG; Ferrando AA; Krivtsov A; Armstrong S; Leung L; Ochiana SO; Chiosis G; Levine RL; Kleppe M
    Blood; 2015 Nov; 126(22):2479-83. PubMed ID: 26443624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.
    Albacker LA; Wu J; Smith P; Warmuth M; Stephens PJ; Zhu P; Yu L; Chmielecki J
    PLoS One; 2017; 12(11):e0176181. PubMed ID: 29121062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.