BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20167799)

  • 1. DNA repair by the cryptic endonuclease activity of Mu transposase.
    Choi W; Harshey RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis.
    Kruklitis R; Welty DJ; Nakai H
    EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions.
    Choi W; Jang S; Harshey RM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14112-7. PubMed ID: 25197059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition.
    Jones JM; Welty DJ; Nakai H
    J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX.
    Abdelhakim AH; Oakes EC; Sauer RT; Baker TA
    Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome.
    Abdelhakim AH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
    Burton BM; Baker TA
    Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex.
    Burton BM; Williams TL; Baker TA
    Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein.
    Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A
    Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility.
    Marshall-Batty KR; Nakai H
    J Biol Chem; 2008 Apr; 283(14):9060-70. PubMed ID: 18230617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA gyrase requirements distinguish the alternate pathways of Mu transposition.
    Sokolsky TD; Baker TA
    Mol Microbiol; 2003 Jan; 47(2):397-409. PubMed ID: 12519191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction.
    Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G
    J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host factors that promote transpososome disassembly and the PriA-PriC pathway for restart primosome assembly.
    North SH; Nakai H
    Mol Microbiol; 2005 Jun; 56(6):1601-16. PubMed ID: 15916609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase.
    Coros CJ; Sekino Y; Baker TA; Chaconas G
    J Biol Chem; 2003 Aug; 278(33):31210-7. PubMed ID: 12791691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of transposable phage Mu DNA insertions begins only when the E. coli replisome collides with the transpososome.
    Jang S; Harshey RM
    Mol Microbiol; 2015 Aug; 97(4):746-58. PubMed ID: 25983038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel DNA binding and nuclease activity in domain III of Mu transposase: evidence for a catalytic region involved in donor cleavage.
    Wu Z; Chaconas G
    EMBO J; 1995 Aug; 14(15):3835-43. PubMed ID: 7641701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli.
    Jang S; Sandler SJ; Harshey RM
    PLoS Genet; 2012; 8(4):e1002642. PubMed ID: 22511883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.