BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20167936)

  • 21. "ApoptomiRs" in vascular cells: their role in physiological and pathological angiogenesis.
    Quintavalle C; Garofalo M; Croce CM; Condorelli G
    Vascul Pharmacol; 2011 Oct; 55(4):87-91. PubMed ID: 21798370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and comparative genomics of two serum response factor genes in zebrafish.
    Davis JL; Long X; Georger MA; Scott IC; Rich A; Miano JM
    Int J Dev Biol; 2008; 52(4):389-96. PubMed ID: 18415940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade.
    Hashiya N; Jo N; Aoki M; Matsumoto K; Nakamura T; Sato Y; Ogata N; Ogihara T; Kaneda Y; Morishita R
    Circulation; 2004 Jun; 109(24):3035-41. PubMed ID: 15173033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy.
    Wang CH; Ciliberti N; Li SH; Szmitko PE; Weisel RD; Fedak PW; Al-Omran M; Cherng WJ; Li RK; Stanford WL; Verma S
    Circulation; 2004 Mar; 109(11):1392-400. PubMed ID: 14993120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin.
    Yoshida T; Hoofnagle MH; Owens GK
    Circ Res; 2004 Apr; 94(8):1075-82. PubMed ID: 15016729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
    Illi B; Scopece A; Nanni S; Farsetti A; Morgante L; Biglioli P; Capogrossi MC; Gaetano C
    Circ Res; 2005 Mar; 96(5):501-8. PubMed ID: 15705964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes.
    Yoshida T; Sinha S; Dandré F; Wamhoff BR; Hoofnagle MH; Kremer BE; Wang DZ; Olson EN; Owens GK
    Circ Res; 2003 May; 92(8):856-64. PubMed ID: 12663482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels.
    Delafontaine P; Song YH; Li Y
    Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):435-44. PubMed ID: 14604834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: implications for cell-seeded technology in bladder tissue engineering.
    Azzarello J; Kropp BP; Fung KM; Lin HK
    J Tissue Eng Regen Med; 2009 Dec; 3(8):579-89. PubMed ID: 19685443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extra-embryonic vasculature development is regulated by the transcription factor HAND1.
    Morikawa Y; Cserjesi P
    Development; 2004 May; 131(9):2195-204. PubMed ID: 15073150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin.
    Petit MM; Lindskog H; Larsson E; Wasteson P; Athley E; Breuer S; Angstenberger M; Hertfelder D; Mattsson E; Nordheim A; Nelander S; Lindahl P
    Circ Res; 2008 Jul; 103(1):61-9. PubMed ID: 18511849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of specific microRNAs for endothelial function and angiogenesis.
    Wu F; Yang Z; Li G
    Biochem Biophys Res Commun; 2009 Sep; 386(4):549-53. PubMed ID: 19540203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microregulation of plaque neovascularization.
    Suárez Y
    Arterioscler Thromb Vasc Biol; 2010 Aug; 30(8):1500-1. PubMed ID: 20631347
    [No Abstract]   [Full Text] [Related]  

  • 34. miR-143 and miR-145: molecular keys to switch the phenotype of vascular smooth muscle cells.
    Rangrez AY; Massy ZA; Metzinger-Le Meuth V; Metzinger L
    Circ Cardiovasc Genet; 2011 Apr; 4(2):197-205. PubMed ID: 21505201
    [No Abstract]   [Full Text] [Related]  

  • 35. Myocardin: dominant driver of the smooth muscle cell contractile phenotype.
    Parmacek MS
    Arterioscler Thromb Vasc Biol; 2008 Aug; 28(8):1416-7. PubMed ID: 18650504
    [No Abstract]   [Full Text] [Related]  

  • 36. The multifactorial nature of microRNAs in vascular remodelling.
    Welten SM; Goossens EA; Quax PH; Nossent AY
    Cardiovasc Res; 2016 May; 110(1):6-22. PubMed ID: 26912672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiogenic circular RNAs: A new landscape in cardiovascular diseases.
    Zhang TR; Huang WQ
    Microvasc Res; 2020 May; 129():103983. PubMed ID: 31953183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNAs regulating cell pluripotency and vascular differentiation.
    Howard L; Kane NM; Milligan G; Baker AH
    Vascul Pharmacol; 2011 Oct; 55(4):69-78. PubMed ID: 21854874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and pathologies of the arterial wall.
    Seidelmann SB; Lighthouse JK; Greif DM
    Cell Mol Life Sci; 2014 Jun; 71(11):1977-99. PubMed ID: 24071897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNAs in atherosclerosis.
    Chen KC; Juo SH
    Kaohsiung J Med Sci; 2012 Dec; 28(12):631-40. PubMed ID: 23217354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.