These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20168002)

  • 1. Relationship between speed and EEG activity during imagined and executed hand movements.
    Yuan H; Perdoni C; He B
    J Neural Eng; 2010 Apr; 7(2):26001. PubMed ID: 20168002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Trial Recognition of Imagined Forces and Speeds of Hand Clenching Based on Brain Topography and Brain Network.
    Xiong X; Fu Y; Chen J; Liu L; Zhang X
    Brain Topogr; 2019 Mar; 32(2):240-254. PubMed ID: 30599076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding speed of imagined hand movement from EEG.
    Yuan H; Perdoni C; He B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():142-5. PubMed ID: 21096743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.
    Fu Y; Xiong X; Jiang C; Xu B; Li Y; Li H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1641-1652. PubMed ID: 27849544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation and Analysis of Microstate Related to Variation in Executed and Imagined Movement of Force of Hand Clenching.
    Fu Y; Chen J; Xiong X
    Comput Intell Neurosci; 2018; 2018():9270685. PubMed ID: 30224914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 8. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of event-related desynchronization during kinematic and kinetic hand movements.
    Nakayashiki K; Saeki M; Takata Y; Hayashi Y; Kondo T
    J Neuroeng Rehabil; 2014 May; 11():90. PubMed ID: 24886610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements.
    Formaggio E; Storti SF; Boscolo Galazzo I; Gandolfi M; Geroin C; Smania N; Spezia L; Waldner A; Fiaschi A; Manganotti P
    J Neuroeng Rehabil; 2013 Feb; 10():24. PubMed ID: 23442349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling motor execution from motor imagery with the phantom limb.
    Raffin E; Mattout J; Reilly KT; Giraux P
    Brain; 2012 Feb; 135(Pt 2):582-95. PubMed ID: 22345089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based discrimination between imagination of right and left hand movement.
    Pfurtscheller G; Neuper C; Flotzinger D; Pregenzer M
    Electroencephalogr Clin Neurophysiol; 1997 Dec; 103(6):642-51. PubMed ID: 9546492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements.
    Yuan H; Liu T; Szarkowski R; Rios C; Ashe J; He B
    Neuroimage; 2010 Feb; 49(3):2596-606. PubMed ID: 19850134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D hand motion trajectory prediction from EEG mu and beta bandpower.
    Korik A; Sosnik R; Siddique N; Coyle D
    Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance.
    Formaggio E; Storti SF; Boscolo Galazzo I; Gandolfi M; Geroin C; Smania N; Fiaschi A; Manganotti P
    Brain Topogr; 2015 Mar; 28(2):352-63. PubMed ID: 24838817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block design enhances classification of 3D reach targets from electroencephalographic signals.
    Sosnik R; Tadipatri VA; Tewfik AH; Pellizzer G
    Neuroscience; 2016 Aug; 329():201-12. PubMed ID: 27223628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement.
    Wheaton LA; Carpenter M; Mizelle JC; Forrester L
    Exp Brain Res; 2008 Jan; 184(1):121-6. PubMed ID: 17955226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.