BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 20168077)

  • 1. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics.
    Li E; Hristova K
    Cell Adh Migr; 2010; 4(2):249-54. PubMed ID: 20168077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies.
    Li E; Hristova K
    Biochemistry; 2006 May; 45(20):6241-51. PubMed ID: 16700535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions.
    Finger C; Escher C; Schneider D
    Sci Signal; 2009 Sep; 2(89):ra56. PubMed ID: 19797273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain.
    He L; Shobnam N; Hristova K
    Biochim Biophys Acta; 2011 Jan; 1808(1):253-9. PubMed ID: 20713021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation.
    He L; Hoffmann AR; Serrano C; Hristova K; Wimley WC
    J Mol Biol; 2011 Sep; 412(1):43-54. PubMed ID: 21767549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method.
    Merzlyakov M; Chen L; Hristova K
    J Membr Biol; 2007 Feb; 215(2-3):93-103. PubMed ID: 17565424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.
    Sawma P; Roth L; Blanchard C; Bagnard D; Crémel G; Bouveret E; Duneau JP; Sturgis JN; Hubert P
    J Mol Biol; 2014 Dec; 426(24):4099-4111. PubMed ID: 25315821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases.
    Ostman A; Böhmer FD
    Trends Cell Biol; 2001 Jun; 11(6):258-66. PubMed ID: 11356362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase.
    Bell CA; Tynan JA; Hart KC; Meyer AN; Robertson SC; Donoghue DJ
    Mol Biol Cell; 2000 Oct; 11(10):3589-99. PubMed ID: 11029057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor tyrosine kinase activation: From the ligand perspective.
    Trenker R; Jura N
    Curr Opin Cell Biol; 2020 Apr; 63():174-185. PubMed ID: 32114309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.
    Sarabipour S; Del Piccolo N; Hristova K
    Acc Chem Res; 2015 Aug; 48(8):2262-9. PubMed ID: 26244699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoinhibitory mechanisms in receptor tyrosine kinases.
    Hubbard SR
    Front Biosci; 2002 Feb; 7():d330-40. PubMed ID: 11815286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications.
    Iwamoto T; You M; Li E; Spangler J; Tomich JM; Hristova K
    Biochim Biophys Acta; 2005 Mar; 1668(2):240-7. PubMed ID: 15737335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation.
    Li E; You M; Hristova K
    J Mol Biol; 2006 Feb; 356(3):600-12. PubMed ID: 16384584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation-introduced dimerization of receptor tyrosine kinases: from protein structure aberrations to carcinogenesis.
    Hu H; Liu Y; Jiang T
    Tumour Biol; 2015 Mar; 36(3):1423-8. PubMed ID: 25750036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures.
    Diwanji D; Thaker T; Jura N
    IUBMB Life; 2019 Jun; 71(6):706-720. PubMed ID: 31046201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state.
    Bocharov EV; Mineev KS; Volynsky PE; Ermolyuk YS; Tkach EN; Sobol AG; Chupin VV; Kirpichnikov MP; Efremov RG; Arseniev AS
    J Biol Chem; 2008 Mar; 283(11):6950-6. PubMed ID: 18178548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and forster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands.
    Li E; You M; Hristova K
    Biochemistry; 2005 Jan; 44(1):352-60. PubMed ID: 15628877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging strategies for receptor tyrosine kinase dimers in living cells.
    Zhang X; Yin J; Pan W; Li Y; Li N; Tang B
    Anal Bioanal Chem; 2023 Jan; 415(1):67-82. PubMed ID: 36190534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.