These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2016919)

  • 1. Photoplethysmography. Part 1. Comparison with laser Doppler flowmetry.
    Lindberg LG; Tamura T; Oberg PA
    Med Biol Eng Comput; 1991 Jan; 29(1):40-7. PubMed ID: 2016919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmography. Part 2. Influence of light source wavelength.
    Lindberg LG; Oberg PA
    Med Biol Eng Comput; 1991 Jan; 29(1):48-54. PubMed ID: 2016920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique based on laser Doppler flowmetry and photoplethysmography for simultaneously monitoring blood flow at different tissue depths.
    Hagblad J; Lindberg LG; Kaisdotter Andersson A; Bergstrand S; Lindgren M; Ek AC; Folke M; Lindén M
    Med Biol Eng Comput; 2010 May; 48(5):415-22. PubMed ID: 20107915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different lasers reveal different skin microcirculatory flowmotion - data from the wavelet transform analysis of human hindlimb perfusion.
    Rodrigues LM; Rocha C; Ferreira H; Silva H
    Sci Rep; 2019 Nov; 9(1):16951. PubMed ID: 31740748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of skin photoplethysmography, laser Doppler flowmetry and transcutaneous oxygen tensiometry to stenosis-induced reductions in limb blood flow.
    Kvernebo K; Megerman J; Hamilton G; Abbott WM
    Eur J Vasc Surg; 1989 Apr; 3(2):113-20. PubMed ID: 2653874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the correlation between photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscillations.
    Mizeva I; Di Maria C; Frick P; Podtaev S; Allen J
    J Biomed Opt; 2015 Mar; 20(3):037007. PubMed ID: 25764202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular blood flow and skin temperature changes in the fingers following a deep nspiratory gasp.
    Allen J; Frame JR; Murray A
    Physiol Meas; 2002 May; 23(2):365-73. PubMed ID: 12051308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of photoplethysmography, laser doppler flowmetry and near infrared spectroscopy during induced thermal stress.
    Budidha K; Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6417-20. PubMed ID: 26737761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive measurement of skin blood flow: comparison between plethysmography, laser-Doppler flowmeter and heat thermal clearance method.
    Saumet JL; Dittmar A; Leftheriotis G
    Int J Microcirc Clin Exp; 1986; 5(1):73-83. PubMed ID: 2941386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of inspiratory-induced vasoconstrictive episodes: a comparison of laser Doppler fluxmetry and photoplethysmography.
    Rauh R; Posfay A; Mück-Weymann M
    Clin Physiol Funct Imaging; 2003 Nov; 23(6):344-8. PubMed ID: 14617265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital blood flow in cooled and contralateral finger in patients with Raynaud's phenomenon. Comparative measurements between photoelectrical plethysmography and laser Doppler flowmetry.
    Suichies HE; Aarnoudse JG; Wouda AA; Jentink HW; de Mul FF; Greve J
    Angiology; 1992 Feb; 43(2):134-41. PubMed ID: 1536474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-Doppler measurement of skin blood flow: comparison with plethysmography.
    Johnson JM; Taylor WF; Shepherd AP; Park MK
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):798-803. PubMed ID: 6706783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Doppler flowmetry, a reliable technique for measuring pharmacologically induced changes in cutaneous blood flow?
    Müller P; Keller R; Imhof P
    Methods Find Exp Clin Pharmacol; 1987 Jun; 9(6):409-20. PubMed ID: 2958664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges.
    Abay TY; Kyriacou PA
    Physiol Meas; 2016 Apr; 37(4):503-14. PubMed ID: 26963349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug- and temperature-induced changes in peripheral circulation measured by laser-Doppler flowmetry and digital-pulse plethysmography.
    Sundberg S; Castrén M
    Scand J Clin Lab Invest; 1986 Jun; 46(4):359-65. PubMed ID: 3088718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The correlation between three methods of skin perfusion pressure measurement: radionuclide washout, laser Doppler flow, and photoplethysmography.
    Malvezzi L; Castronuovo JJ; Swayne LC; Cone D; Trivino JZ
    J Vasc Surg; 1992 May; 15(5):823-9; discussion 829-30. PubMed ID: 1578538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-invasive measure of changes in blood flow in the human anterior tibial muscle.
    Zhang Q; Lindberg LG; Kadefors R; Styf J
    Eur J Appl Physiol; 2001 May; 84(5):448-52. PubMed ID: 11417434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Doppler flowmetry during hyperaemic reactions in the skin.
    Svensson H; Jönsson BA
    Int J Microcirc Clin Exp; 1988 Jan; 7(1):87-96. PubMed ID: 3280509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation.
    Figueiras E; Campos R; Semedo S; Oliveira R; Requicha Ferreira LF; Humeau-Heurtier A
    Rev Sci Instrum; 2012 Mar; 83(3):034302. PubMed ID: 22462941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.