BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20170130)

  • 1. A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro.
    Prosseda G; Mazzola A; Di Martino ML; Tielker D; Micheli G; Colonna B
    Biochemistry; 2010 Apr; 49(13):2778-85. PubMed ID: 20170130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome analysis of Escherichia coli promoter sequences evidences that DNA static curvature plays a more important role in gene transcription than has previously been anticipated.
    Olivares-Zavaleta N; Jáuregui R; Merino E
    Genomics; 2006 Mar; 87(3):329-37. PubMed ID: 16413165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The virF promoter in Shigella: more than just a curved DNA stretch.
    Prosseda G; Falconi M; Giangrossi M; Gualerzi CO; Micheli G; Colonna B
    Mol Microbiol; 2004 Jan; 51(2):523-37. PubMed ID: 14756791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curved DNA in promoter sequences.
    Gabrielian AE; Landsman D; Bolshoy A
    In Silico Biol; 1999-2000; 1(4):183-96. PubMed ID: 11479933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of upstream activation of the vnfH promoter of Azotobacter vinelandii.
    Bageshwar UK; Raina R; Choudhury NR; Das HK
    Can J Microbiol; 1998 May; 44(5):405-15. PubMed ID: 9699296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature distribution in prokaryotic genomes.
    Kozobay-Avraham L; Hosid S; Bolshoy A
    In Silico Biol; 2004; 4(3):361-75. PubMed ID: 15724286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner.
    Katayama S; Matsushita O; Jung CM; Minami J; Okabe A
    EMBO J; 1999 Jun; 18(12):3442-50. PubMed ID: 10369683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional significance of the DNA curvature located near a promoter: an analysis using the beta-lactamase promoter of pUC19.
    Hirota Y; Ohyama T
    Nucleic Acids Symp Ser; 1991; (25):117-8. PubMed ID: 1842047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible function of DNA curvature in transcription.
    Ohyama T; Hirota Y
    Nucleic Acids Symp Ser; 1993; (29):153-4. PubMed ID: 8247748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between DNA bending and transcriptional activation at a plasmid promoter.
    Pérez-Martín J; Espinosa M
    J Mol Biol; 1994 Aug; 241(1):7-17. PubMed ID: 8051709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism.
    Opel ML; Aeling KA; Holmes WM; Johnson RC; Benham CJ; Hatfield GW
    Mol Microbiol; 2004 Jul; 53(2):665-74. PubMed ID: 15228542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation.
    Hirota Y; Ohyama T
    J Mol Biol; 1995 Dec; 254(4):566-78. PubMed ID: 7500334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli RrnB P1 promoter activity.
    Afflerbach H; Schröder O; Wagner R
    J Mol Biol; 1999 Feb; 286(2):339-53. PubMed ID: 9973555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies.
    Hillebrand A; Wurm R; Menzel A; Wagner R
    Biol Chem; 2005 Jun; 386(6):523-34. PubMed ID: 16006239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence.
    Rochman M; Blot N; Dyachenko M; Glaser G; Travers A; Muskhelishvili G
    Mol Microbiol; 2004 Jul; 53(1):143-52. PubMed ID: 15225310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS.
    Falconi M; Colonna B; Prosseda G; Micheli G; Gualerzi CO
    EMBO J; 1998 Dec; 17(23):7033-43. PubMed ID: 9843508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varying the supercoiling of DNA on transcription and its regulation.
    Lim HM; Lewis DE; Lee HJ; Liu M; Adhya S
    Biochemistry; 2003 Sep; 42(36):10718-25. PubMed ID: 12962496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sequence upstream of the -10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli.
    Miksch G; Bettenworth F; Friehs K; Flaschel E
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):312-20. PubMed ID: 16088348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.