These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20170142)

  • 1. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics.
    Bason S; Kaufman Y; Freger V
    J Phys Chem B; 2010 Mar; 114(10):3510-7. PubMed ID: 20170142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential in multi-ionic mixtures.
    Lanteri Y; Szymczyk A; Fievet P
    J Phys Chem B; 2009 Jul; 113(27):9197-204. PubMed ID: 19518100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes.
    Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J
    Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the dielectric constant inside pores of nanofiltration membranes from membrane potential measurements.
    Escoda A; Lanteri Y; Fievet P; Déon S; Szymczyk A
    Langmuir; 2010 Sep; 26(18):14628-35. PubMed ID: 20795661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters.
    Cañas A; Benavente J
    J Colloid Interface Sci; 2002 Feb; 246(2):328-34. PubMed ID: 16290419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration).
    de Lint WB; Biesheuvel PM; Verweij H
    J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energies of the ion equilibrium partition of KCl into nanofiltration membranes based on transmembrane electrical potential and rejection.
    Tu CH; Fang YY; Zhu J; Van der Bruggen B; Wang XL
    Langmuir; 2011 Aug; 27(16):10274-81. PubMed ID: 21728362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport properties and electrokinetic characterization of an amphoteric nanofilter.
    Szymczyk A; Sbaï M; Fievet P; Vidonne A
    Langmuir; 2006 Apr; 22(8):3910-9. PubMed ID: 16584275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiltration theory: good co-ion exclusion approximation for single salts.
    Lefebvre X; Palmeri J
    J Phys Chem B; 2005 Mar; 109(12):5525-40. PubMed ID: 16851593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroviscous Effects in Ceramic Nanofiltration Membranes.
    Farsi A; Boffa V; Christensen ML
    Chemphyschem; 2015 Nov; 16(16):3397-407. PubMed ID: 26346603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of steric, electric, and dielectric effects on membrane potential.
    Lanteri Y; Szymczyk A; Fievet P
    Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions.
    Tu CH; Wang HL; Wang XL
    Langmuir; 2010 Nov; 26(22):17656-64. PubMed ID: 20942428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.