These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20170156)

  • 1. Tailoring the pore alignment for rapid ion transport in microporous carbons.
    Kajdos A; Kvit A; Jones F; Jagiello J; Yushin G
    J Am Chem Soc; 2010 Mar; 132(10):3252-3. PubMed ID: 20170156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon.
    Korenblit Y; Rose M; Kockrick E; Borchardt L; Kvit A; Kaskel S; Yushin G
    ACS Nano; 2010 Mar; 4(3):1337-44. PubMed ID: 20180559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials.
    Nishihara H; Itoi H; Kogure T; Hou PX; Touhara H; Okino F; Kyotani T
    Chemistry; 2009; 15(21):5355-63. PubMed ID: 19338036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.
    Rose M; Korenblit Y; Kockrick E; Borchardt L; Oschatz M; Kaskel S; Yushin G
    Small; 2011 Apr; 7(8):1108-17. PubMed ID: 21449047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel carbon electrode material for highly improved EDLC performance.
    Fang B; Binder L
    J Phys Chem B; 2006 Apr; 110(15):7877-82. PubMed ID: 16610885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon materials for supercapacitor application.
    Frackowiak E
    Phys Chem Chem Phys; 2007 Apr; 9(15):1774-85. PubMed ID: 17415488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors.
    Boukhalfa S; Gordon D; He L; Melnichenko YB; Nitta N; Magasinski A; Yushin G
    ACS Nano; 2014 Mar; 8(3):2495-503. PubMed ID: 24547779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials.
    Yang Z; Xia Y; Mokaya R
    J Am Chem Soc; 2007 Feb; 129(6):1673-9. PubMed ID: 17243684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.
    Im JS; Woo SW; Jung MJ; Lee YS
    J Colloid Interface Sci; 2008 Nov; 327(1):115-9. PubMed ID: 18771778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors.
    Lee SW; Kim J; Chen S; Hammond PT; Shao-Horn Y
    ACS Nano; 2010 Jul; 4(7):3889-96. PubMed ID: 20552996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes.
    Liu X; Zheng M; Xiao Y; Yang Y; Yang L; Liu Y; Lei B; Dong H; Zhang H; Fu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4667-77. PubMed ID: 23688158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.