These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 20170161)
1. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride. Fujimori T; Takaoka M; Morisawa S Environ Sci Technol; 2010 Mar; 44(6):1974-9. PubMed ID: 20170161 [TBL] [Abstract][Full Text] [Related]
2. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Fujimori T; Takaoka M; Takeda N Environ Sci Technol; 2009 Nov; 43(21):8053-9. PubMed ID: 19924922 [TBL] [Abstract][Full Text] [Related]
3. Role of zinc in MSW fly ash during formation of chlorinated aromatics. Fujimori T; Tanino Y; Takaoka M Environ Sci Technol; 2011 Sep; 45(18):7678-84. PubMed ID: 21838315 [TBL] [Abstract][Full Text] [Related]
4. Formation of chlorinated aromatics in model fly ashes using various copper compounds. Takaoka M; Fujimori T; Shiono A; Yamamoto T; Takeda N; Oshita K; Uruga T; Sun Y; Tanaka T Chemosphere; 2010 Jun; 80(2):144-9. PubMed ID: 20452643 [TBL] [Abstract][Full Text] [Related]
5. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
6. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy. Tian S; Yu M; Wang W; Wang Q; Wu Z Environ Sci Technol; 2009 Dec; 43(24):9084-8. PubMed ID: 19928760 [TBL] [Abstract][Full Text] [Related]
7. Deactivation of metal chlorides by alkaline compounds inhibits formation of chlorinated aromatics. Fujimori T; Fujinaga Y; Takaoka M Environ Sci Technol; 2010 Oct; 44(19):7678-84. PubMed ID: 20839860 [TBL] [Abstract][Full Text] [Related]
8. Thermochemical behavior of lead adjusting formation of chlorinated aromatics in MSW fly ash. Fujimori T; Tanino Y; Takaoka M Environ Sci Technol; 2013 Mar; 47(5):2169-76. PubMed ID: 23363298 [TBL] [Abstract][Full Text] [Related]
9. Chlorides behavior in raw fly ash washing experiments. Zhu F; Takaoka M; Oshita K; Kitajima Y; Inada Y; Morisawa S; Tsuno H J Hazard Mater; 2010 Jun; 178(1-3):547-52. PubMed ID: 20171782 [TBL] [Abstract][Full Text] [Related]
10. Enhanced dechlorination of chlorobenzene and in situ dry sorption of resultant Cl-compounds by CaO and Na2CO3 sorbent beds incorporated with Fe2O3. Matsuda H; Ito T; Kuchar D; Tanahashi N; Watanabe C Chemosphere; 2009 Mar; 74(10):1348-53. PubMed ID: 19101013 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption spectroscopy of hemes and hemeproteins in solution: multiple scattering analysis. D'Angelo P; Lapi A; Migliorati V; Arcovito A; Benfatto M; Roscioni OM; Meyer-Klaucke W; Della-Longa S Inorg Chem; 2008 Nov; 47(21):9905-18. PubMed ID: 18837548 [TBL] [Abstract][Full Text] [Related]
12. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376 [TBL] [Abstract][Full Text] [Related]
13. A new structural motif for biological iron: iron K-edge XAS reveals a [Fe4-mu-(OR)5(OR)(9-10)] cluster in the ascidian Perophora annectens. Frank P; DeTomaso A; Hedman B; Hodgson KO Inorg Chem; 2006 May; 45(10):3920-31. PubMed ID: 16676950 [TBL] [Abstract][Full Text] [Related]
14. Direct chlorination of carbon by copper chloride in a thermal process. Fujimori T; Takaoka M Environ Sci Technol; 2009 Apr; 43(7):2241-6. PubMed ID: 19452869 [TBL] [Abstract][Full Text] [Related]
15. Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Carta D; Casula MF; Mountjoy G; Corrias A Phys Chem Chem Phys; 2008 Jun; 10(21):3108-17. PubMed ID: 18688375 [TBL] [Abstract][Full Text] [Related]
16. Quantitative determination of absolute organohalogen concentrations in environmental samples by X-ray absorption spectroscopy. Leri AC; Hay MB; Lanzirotti A; Rao W; Myneni SC Anal Chem; 2006 Aug; 78(16):5711-8. PubMed ID: 16906715 [TBL] [Abstract][Full Text] [Related]
17. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
18. Role of Fe compounds in light aggregate formation from a reservoir sediment. Wei YL; Lin YY J Hazard Mater; 2009 Nov; 171(1-3):111-5. PubMed ID: 19541415 [TBL] [Abstract][Full Text] [Related]
19. Investigations into the metal species of the homogeneous iron(III) catalyzed Michael addition reactions. Bauer M; Kauf T; Christoffers J; Bertagnolli H Phys Chem Chem Phys; 2005 Jul; 7(13):2664-70. PubMed ID: 16189578 [TBL] [Abstract][Full Text] [Related]
20. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]