BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20170254)

  • 1. Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings.
    Sun JY; Pan CX; Tong J; Zhang J
    IET Nanobiotechnol; 2010 Mar; 4(1):10-8. PubMed ID: 20170254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints.
    Rajabi H; Ghoroubi N; Darvizeh A; Dirks JH; Appel E; Gorb SN
    Bioinspir Biomim; 2015 Aug; 10(5):056003. PubMed ID: 26292260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of blood in veins of dragonfly wing on the vibration characteristics.
    Hou D; Yin Y; Zhao H; Zhong Z
    Comput Biol Med; 2015 Mar; 58():14-9. PubMed ID: 25577611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical aspects of the insect wing: an analysis using the finite element method.
    Kesel AB; Philippi U; Nachtigall W
    Comput Biol Med; 1998 Jul; 28(4):423-37. PubMed ID: 9805202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches to the structural modelling of insect wings.
    Wootton RJ; Herbert RC; Young PG; Evans KE
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1577-87. PubMed ID: 14561349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-structure interaction in compliant insect wings.
    Eberle AL; Reinhall PG; Daniel TL
    Bioinspir Biomim; 2014 Jun; 9(2):025005. PubMed ID: 24855064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace.
    Shen H; Ji A; Li Q; Li X; Ma Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):239-251. PubMed ID: 35840718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
    Rajabi H; Ghoroubi N; Stamm K; Appel E; Gorb SN
    Acta Biomater; 2017 Sep; 60():330-338. PubMed ID: 28739543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biaxial mechanical characterization of bat wing skin.
    Skulborstad AJ; Swartz SM; Goulbourne NC
    Bioinspir Biomim; 2015 Apr; 10(3):036004. PubMed ID: 25895436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles.
    O'Hara RP; Palazotto AN
    Bioinspir Biomim; 2012 Dec; 7(4):046011. PubMed ID: 23093001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characteristics analysis of the hind wings in a bamboo weevil (
    Li X; Guo C
    IET Nanobiotechnol; 2019 Oct; 13(8):850-856. PubMed ID: 31625526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
    Cheney JA; Konow N; Bearnot A; Swartz SM
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study on indentation properties of cortical bone tissue: influence of anisotropy.
    Demiral M; Abdel-Wahab A; Silberschmidt V
    Acta Bioeng Biomech; 2015; 17(2):3-14. PubMed ID: 26399190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force measurements of flexible tandem wings in hovering and forward flights.
    Zheng Y; Wu Y; Tang H
    Bioinspir Biomim; 2015 Feb; 10(1):016021. PubMed ID: 25656164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.