BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 20170625)

  • 1. The mechanism of rotating proton pumping ATPases.
    Nakanishi-Matsui M; Sekiya M; Nakamoto RK; Futai M
    Biochim Biophys Acta; 2010 Aug; 1797(8):1343-52. PubMed ID: 20170625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic proton pumping ATPases: from single molecules to diverse physiological roles.
    Nakanishi-Matsui M; Futai M
    IUBMB Life; 2006; 58(5-6):318-22. PubMed ID: 16754325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
    Nakanishi-Matsui M; Sekiya M; Futai M
    Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
    Zhao J; Benlekbir S; Rubinstein JL
    Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotation scheme of V1-motor is different from that of F1-motor.
    Imamura H; Takeda M; Funamoto S; Shimabukuro K; Yoshida M; Yokoyama K
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17929-33. PubMed ID: 16330761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase.
    Futai M; Nakanishi-Matsui M; Okamoto H; Sekiya M; Nakamoto RK
    Biochim Biophys Acta; 2012 Oct; 1817(10):1711-21. PubMed ID: 22459334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the epsilon subunit-sensitive rotation.
    Nakanishi-Matsui M; Kashiwagi S; Hosokawa H; Cipriano DJ; Dunn SD; Wada Y; Futai M
    J Biol Chem; 2006 Feb; 281(7):4126-31. PubMed ID: 16352612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton Pumping ATPases: Rotational Catalysis, Physiological Roles in Oral Pathogenic Bacteria, and Inhibitors.
    Sekiya M
    Biol Pharm Bull; 2022; 45(10):1404-1411. PubMed ID: 36184496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of gamma-beta subunit interactions in the catalytic dwell.
    Sekiya M; Nakamoto RK; Al-Shawi MK; Nakanishi-Matsui M; Futai M
    J Biol Chem; 2009 Aug; 284(33):22401-22410. PubMed ID: 19502237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 3 × 120° rotary mechanism of
    Zarco-Zavala M; Watanabe R; McMillan DGG; Suzuki T; Ueno H; Mendoza-Hoffmann F; García-Trejo JJ; Noji H
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29647-29657. PubMed ID: 33168750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intersubunit rotation in active F-ATPase.
    Sabbert D; Engelbrecht S; Junge W
    Nature; 1996 Jun; 381(6583):623-5. PubMed ID: 8637601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torque generation of Enterococcus hirae V-ATPase.
    Ueno H; Minagawa Y; Hara M; Rahman S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R
    J Biol Chem; 2014 Nov; 289(45):31212-23. PubMed ID: 25258315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory subunit ε in Escherichia coli F
    Sielaff H; Duncan TM; Börsch M
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):775-788. PubMed ID: 29932911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotation of artificial rotor axles in rotary molecular motors.
    Baba M; Iwamoto K; Iino R; Ueno H; Hara M; Nakanishi A; Kishikawa JI; Noji H; Yokoyama K
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11214-11219. PubMed ID: 27647891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase.
    Czub J; Grubmüller H
    J Am Chem Soc; 2014 May; 136(19):6960-8. PubMed ID: 24798048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.