These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 20170658)
21. Determining the involvement of two aminopeptidase Ns in the resistance of Plutella xylostella to the Bt toxin Cry1Ac: cloning and study of in vitro function. Chang X; Wu Q; Wang S; Wang R; Yang Z; Chen D; Jiao X; Mao Z; Zhang Y J Biochem Mol Toxicol; 2012 Feb; 26(2):60-70. PubMed ID: 22371317 [TBL] [Abstract][Full Text] [Related]
22. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
23. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. Chen W; Liu C; Xiao Y; Zhang D; Zhang Y; Li X; Tabashnik BE; Wu K PLoS One; 2015; 10(4):e0126288. PubMed ID: 25885820 [TBL] [Abstract][Full Text] [Related]
24. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Krishnamoorthy M; Jurat-Fuentes JL; McNall RJ; Andacht T; Adang MJ Insect Biochem Mol Biol; 2007 Mar; 37(3):189-201. PubMed ID: 17296494 [TBL] [Abstract][Full Text] [Related]
25. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
26. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. Devi VS; Sharma HC; Rao PA J Insect Physiol; 2013 Apr; 59(4):394-9. PubMed ID: 23391855 [TBL] [Abstract][Full Text] [Related]
27. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. Da Silva IHS; Goméz I; Sánchez J; Martínez de Castro DL; Valicente FH; Soberón M; Polanczyk RA; Bravo A PLoS One; 2018; 13(12):e0207789. PubMed ID: 30521540 [TBL] [Abstract][Full Text] [Related]
28. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
29. Interaction of the Bacillus thuringiensis delta endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris). Li H; Chougule NP; Bonning BC J Invertebr Pathol; 2011 May; 107(1):69-78. PubMed ID: 21300068 [TBL] [Abstract][Full Text] [Related]
30. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Caccia S; Moar WJ; Chandrashekhar J; Oppert C; Anilkumar KJ; Jurat-Fuentes JL; Ferré J Appl Environ Microbiol; 2012 Aug; 78(16):5690-8. PubMed ID: 22685140 [TBL] [Abstract][Full Text] [Related]
31. Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera. Liu C; Gao Y; Ning C; Wu K; Oppert B; Guo Y J Insect Physiol; 2010 Jul; 56(7):718-24. PubMed ID: 20035762 [TBL] [Abstract][Full Text] [Related]
32. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Burton SL; Ellar DJ; Li J; Derbyshire DJ J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207 [TBL] [Abstract][Full Text] [Related]
33. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). Wang B; Wei J; Wang Y; Chen L; Liang G Arch Insect Biochem Physiol; 2020 May; 104(1):e21661. PubMed ID: 32011765 [TBL] [Abstract][Full Text] [Related]
34. Midgut aminopeptidase N isoforms from Ostrinia nubilalis: activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Crava CM; Bel Y; Jakubowska AK; Ferré J; Escriche B Insect Biochem Mol Biol; 2013 Oct; 43(10):924-35. PubMed ID: 23933214 [TBL] [Abstract][Full Text] [Related]
35. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
36. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. Liang GM; Wu KM; Yu HK; Li KK; Feng X; Guo YY J Invertebr Pathol; 2008 Feb; 97(2):142-9. PubMed ID: 17950749 [TBL] [Abstract][Full Text] [Related]
37. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: identification of proteins binding the delta-endotoxin, Cry1Ac of Bacillus thuringiensis. Angelucci C; Barrett-Wilt GA; Hunt DF; Akhurst RJ; East PD; Gordon KH; Campbell PM Insect Biochem Mol Biol; 2008 Jul; 38(7):685-96. PubMed ID: 18549954 [TBL] [Abstract][Full Text] [Related]
38. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Jurat-Fuentes JL; Adang MJ Biochemistry; 2006 Aug; 45(32):9688-95. PubMed ID: 16893170 [TBL] [Abstract][Full Text] [Related]
39. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715 [TBL] [Abstract][Full Text] [Related]
40. Bacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae. Rodrigo-Simón A; Caccia S; Ferré J Appl Environ Microbiol; 2008 Mar; 74(6):1710-6. PubMed ID: 18223107 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]