These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The influence of heel height on utilized coefficient of friction during walking. Blanchette MG; Brault JR; Powers CM Gait Posture; 2011 May; 34(1):107-10. PubMed ID: 21536444 [TBL] [Abstract][Full Text] [Related]
4. Biomechanics of slips. Redfern MS; Cham R; Gielo-Perczak K; Grönqvist R; Hirvonen M; Lanshammar H; Marpet M; Pai CY; Powers C Ergonomics; 2001 Oct; 44(13):1138-66. PubMed ID: 11794762 [TBL] [Abstract][Full Text] [Related]
5. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Lockhart TE; Kim S Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575 [TBL] [Abstract][Full Text] [Related]
6. Temporal changes in the required shoe-floor friction when walking following an induced slip. Beringer DN; Nussbaum MA; Madigan ML PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299 [TBL] [Abstract][Full Text] [Related]
7. Required coefficient of friction during level walking is predictive of slipping. Beschorner KE; Albert DL; Redfern MS Gait Posture; 2016 Jul; 48():256-260. PubMed ID: 27367937 [TBL] [Abstract][Full Text] [Related]
8. Changes in gait when anticipating slippery floors. Cham R; Redfern MS Gait Posture; 2002 Apr; 15(2):159-71. PubMed ID: 11869910 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination. Nagano H; Sparrow WA; Begg RK Ergonomics; 2013; 56(6):1038-48. PubMed ID: 23600960 [TBL] [Abstract][Full Text] [Related]
10. Kinematics and kinetics of the shoe during human slips. Iraqi A; Cham R; Redfern MS; Vidic NS; Beschorner KE J Biomech; 2018 Jun; 74():57-63. PubMed ID: 29759653 [TBL] [Abstract][Full Text] [Related]
11. Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls. Beschorner K; Cham R Ergonomics; 2008 Dec; 51(12):1799-813. PubMed ID: 18937108 [TBL] [Abstract][Full Text] [Related]
12. Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments. Trkov M; Yi J; Liu T; Li K J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29055127 [TBL] [Abstract][Full Text] [Related]
13. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking. Yamaguchi T; Yano M; Onodera H; Hokkirigawa K Gait Posture; 2013 Jun; 38(2):209-14. PubMed ID: 23218767 [TBL] [Abstract][Full Text] [Related]
14. Coefficient of friction testing parameters influence the prediction of human slips. Iraqi A; Cham R; Redfern MS; Beschorner KE Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300 [TBL] [Abstract][Full Text] [Related]
15. Analysis of invoked slips while wearing flip-flops in wet and dry conditions: Does alternative footwear alter slip kinematics? Tennant LM; Fok DJ; Kingston DC; Winberg TB; Parkinson RJ; Laing AC; Callaghan JP Appl Ergon; 2021 Apr; 92():103318. PubMed ID: 33290936 [TBL] [Abstract][Full Text] [Related]
16. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking. Burnfield JM; Powers CM J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269 [TBL] [Abstract][Full Text] [Related]
17. The Required Coefficient of Friction for evaluating gait alterations in people with Multiple Sclerosis during gait. Pacifici I; Galli M; Kleiner AF; Corona F; Coghe G; Marongiu E; Loi A; Crisafulli A; Cocco E; Marrosu MG; Pau M Mult Scler Relat Disord; 2016 Nov; 10():174-178. PubMed ID: 27919485 [TBL] [Abstract][Full Text] [Related]
18. Effect of load carrying on required coefficient of friction. Seo JS; Kim S Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523 [TBL] [Abstract][Full Text] [Related]
19. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Fong DT; Mao DW; Li JX; Hong Y J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710 [TBL] [Abstract][Full Text] [Related]
20. Rearward movement of the heel at heel strike. McGorry RW; Chang CC; DiDomenico A Appl Ergon; 2008 Nov; 39(6):678-84. PubMed ID: 18280459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]