These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20170931)

  • 1. Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification.
    Kavousi B; Daudi A; Cook CM; Joseleau JP; Ruel K; Devoto A; Bolwell GP; Blee KA
    Phytochemistry; 2010 Apr; 71(5-6):531-42. PubMed ID: 20170931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability.
    Bindschedler LV; Tuerck J; Maunders M; Ruel K; Petit-Conil M; Danoun S; Boudet AM; Joseleau JP; Bolwell GP
    Phytochemistry; 2007 Nov; 68(21):2635-48. PubMed ID: 17920089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional changes related to secondary wall formation in xylem of transgenic lines of tobacco altered for lignin or xylan content which show improved saccharification.
    Cook CM; Daudi A; Millar DJ; Bindschedler LV; Khan S; Bolwell GP; Devoto A
    Phytochemistry; 2012 Feb; 74():79-89. PubMed ID: 22119077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves.
    Debnam PM; Fernie AR; Leisse A; Golding A; Bowsher CG; Grimshaw C; Knight JS; Emes MJ
    Plant J; 2004 Apr; 38(1):49-59. PubMed ID: 15053759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of xylem class III peroxidases in lignification.
    Marjamaa K; Kukkola EM; Fagerstedt KV
    J Exp Bot; 2009; 60(2):367-76. PubMed ID: 19264758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.
    Shi Y; Zhang X; Xu ZY; Li L; Zhang C; Schläppi M; Xu ZQ
    Plant Biol (Stuttg); 2011 Sep; 13(5):731-9. PubMed ID: 21815977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco.
    Prashant S; Srilakshmi Sunita M; Pramod S; Gupta RK; Anil Kumar S; Rao Karumanchi S; Rawal SK; Kavi Kishor PB
    Plant Cell Rep; 2011 Dec; 30(12):2215-31. PubMed ID: 21847621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes.
    Ma QH; Wang C; Zhu HH
    Biochimie; 2011 Jul; 93(7):1179-86. PubMed ID: 21536093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of high-isoelectric-point extracellular superoxide dismutase mediates alterations in the metabolism of reactive oxygen species and developmental disturbances in hybrid aspen.
    Srivastava V; Schinkel H; Witzell J; Hertzberg M; Torp M; Srivastava MK; Karpinska B; Melzer M; Wingsle G
    Plant J; 2007 Jan; 49(1):135-48. PubMed ID: 17233796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration.
    Dauwe R; Morreel K; Goeminne G; Gielen B; Rohde A; Van Beeumen J; Ralph J; Boudet AM; Kopka J; Rochange SF; Halpin C; Messens E; Boerjan W
    Plant J; 2007 Oct; 52(2):263-85. PubMed ID: 17727617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism.
    Coleman HD; Ellis DD; Gilbert M; Mansfield SD
    Plant Biotechnol J; 2006 Jan; 4(1):87-101. PubMed ID: 17177788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality.
    Shadle G; Chen F; Srinivasa Reddy MS; Jackson L; Nakashima J; Dixon RA
    Phytochemistry; 2007 Jun; 68(11):1521-9. PubMed ID: 17466347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum.
    Pramod S; Saha T; Rekha K; Kavi Kishor PB
    Plant Cell Rep; 2021 Jan; 40(1):127-142. PubMed ID: 33068174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant.
    Patten AM; Cardenas CL; Cochrane FC; Laskar DD; Bedgar DL; Davin LB; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2092-107. PubMed ID: 16153410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees.
    Hu WJ; Harding SA; Lung J; Popko JL; Ralph J; Stokke DD; Tsai CJ; Chiang VL
    Nat Biotechnol; 1999 Aug; 17(8):808-12. PubMed ID: 10429249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics.
    Li Y; Kajita S; Kawai S; Katayama Y; Morohoshi N
    J Plant Res; 2003 Jun; 116(3):175-82. PubMed ID: 12836039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels.
    Chabannes M; Ruel K; Yoshinaga A; Chabbert B; Jauneau A; Joseleau JP; Boudet AM
    Plant J; 2001 Nov; 28(3):271-82. PubMed ID: 11722770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants.
    Elfstrand M; Sitbon F; Lapierre C; Bottin A; von Arnold S
    Planta; 2002 Mar; 214(5):708-16. PubMed ID: 11882939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis.
    Goicoechea M; Lacombe E; Legay S; Mihaljevic S; Rech P; Jauneau A; Lapierre C; Pollet B; Verhaegen D; Chaubet-Gigot N; Grima-Pettenati J
    Plant J; 2005 Aug; 43(4):553-67. PubMed ID: 16098109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions.
    Lein W; Usadel B; Stitt M; Reindl A; Ehrhardt T; Sonnewald U; Börnke F
    Plant Biotechnol J; 2008 Apr; 6(3):246-63. PubMed ID: 18086234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.