BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20170969)

  • 1. Bioavailability of sorbed phenanthrene and permethrin in sediments to Chironomus tentans.
    Cui X; Hunter W; Yang Y; Chen Y; Gan J
    Aquat Toxicol; 2010 Jun; 98(1):83-90. PubMed ID: 20170969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of black carbon on pyrethroid availability in sediment.
    Yang Y; Hunter W; Tao S; Gan J
    J Agric Food Chem; 2009 Jan; 57(1):232-8. PubMed ID: 19090765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability of desorption-resistant phenanthrene to the oligochaete Ilyodrilus templetoni.
    Lu X; Reible DD; Fleeger JW; Chai Y
    Environ Toxicol Chem; 2003 Jan; 22(1):153-60. PubMed ID: 12503759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus.
    You J; Brennan A; Lydy MJ
    Chemosphere; 2009 Jun; 75(11):1477-82. PubMed ID: 19278716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment.
    Shen M; Xia X; Wang F; Zhang P; Zhao X
    Environ Toxicol Chem; 2012 Jan; 31(1):202-9. PubMed ID: 22020988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment.
    Hunter W; Xu Y; Spurlock F; Gan J
    Environ Toxicol Chem; 2008 Mar; 27(3):568-75. PubMed ID: 17988178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments.
    Maund SJ; Hamer MJ; Lane MC; Farrelly E; Rapley JH; Goggin UM; Gentle WE
    Environ Toxicol Chem; 2002 Jan; 21(1):9-15. PubMed ID: 11808535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca.
    Dussault EB; Balakrishnan VK; Borgmann U; Solomon KR; Sibley PK
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1635-41. PubMed ID: 19477518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of desorption for describing the bioavailability of select polycyclic aromatic hydrocarbon and polychlorinated biphenyl congeners for seven laboratory-spiked sediments.
    Kukkonen JV; Landrum PF; Mitra S; Gossiaux DC; Gunnarsson J; Weston D
    Environ Toxicol Chem; 2004 Aug; 23(8):1842-51. PubMed ID: 15352471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging and sediment composition on hexachlorobenzene desorption resistance compared to oral bioavailability in rats.
    Chai Y; Davis JW; Saghir SA; Qiu X; Budinsky RA; Bartels MJ
    Chemosphere; 2008 Jun; 72(3):432-41. PubMed ID: 18396312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective supercritical fluid extraction to estimate the fraction of PCB that is bioavailable to a benthic organism in a naturally contaminated sediment.
    Nilsson T; Sporring S; Björklund E
    Chemosphere; 2003 Dec; 53(8):1049-52. PubMed ID: 14505728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment.
    Xia X; Chen X; Zhao X; Chen H; Shen M
    Environ Sci Technol; 2012 Nov; 46(22):12467-75. PubMed ID: 23121516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desorption of sediment-associated polychlorinated dibenzo-p-dioxins, dibenzofurans, diphenyl ethers and hydroxydiphenyl ethers from contaminated sediment.
    Sormunen AJ; Koistinen J; Leppänen MT; Kukkonen JV
    Chemosphere; 2008 May; 72(1):1-7. PubMed ID: 18400245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium.
    Xia X; Li Y; Zhou Z; Feng C
    Chemosphere; 2010 Mar; 78(11):1329-36. PubMed ID: 20116085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the role of desorption on the bioavailability of sediment-associated 3,4,3',4'-tetrachlorobiphenyl in benthic invertebrates.
    Leppänen MT; Landrum PF; Kukkonen JV; Greenberg MS; Burton GA; Robinson SD; Gossiaux DC
    Environ Toxicol Chem; 2003 Dec; 22(12):2861-71. PubMed ID: 14713025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the bioavailability of sediment-associated polybrominated diphenyl ethers using a 45-d sequential Tenax extraction.
    Liu M; Tian S; Chen P; Zhu L
    Chemosphere; 2011 Oct; 85(3):424-31. PubMed ID: 21890174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between desorption intervals and availability of sediment-associated hydrophobic contaminants.
    Yang Y; Hunter W; Tao S; Gan J
    Environ Sci Technol; 2008 Nov; 42(22):8446-51. PubMed ID: 19068830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of hydrophobic organic contaminants in sediment with different particle-size distributions.
    Mehler WT; Li H; Pang J; Sun B; Lydy MJ; You J
    Arch Environ Contam Toxicol; 2011 Jul; 61(1):74-82. PubMed ID: 20953950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sediment microbes and biofilms increase the bioavailability of chlorpyrifos in Chironomus riparius (Chironomidae, Diptera).
    Widenfalk A; Lundqvist A; Goedkoop W
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):490-7. PubMed ID: 18093655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction.
    Leppänen MT; Kukkonen JV
    Environ Pollut; 2006 Mar; 140(1):150-63. PubMed ID: 16144733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.