BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 20171095)

  • 1. Simple and conveniently accessible bi-fluorescence-labeled substrates for amylases.
    Oka H; Koyama T; Hatano K; Terunuma D; Matsuoka K
    Bioorg Med Chem Lett; 2010 Mar; 20(6):1969-71. PubMed ID: 20171095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic studies of bi-fluorescence-labeled maltooligosaccharides as substrates for α-amylase on the basis of fluorescence resonance energy transfer (FRET).
    Oka H; Koyama T; Hatano K; Matsuoka K
    Bioorg Med Chem; 2012 Jan; 20(1):435-45. PubMed ID: 22100259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-fluorescence-labeled maltoheptaoside: convenient substrate for continual assay of alpha-amylase.
    Nishimura SI; Kimura N; Matsuoka K; Lee YC
    Carbohydr Lett; 2001; 4(2):77-84. PubMed ID: 11506161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptides.
    Takiyama K; Kinoshita E; Kinoshita-Kikuta E; Fujioka Y; Kubo Y; Koike T
    Anal Biochem; 2009 May; 388(2):235-41. PubMed ID: 19281791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor.
    Othman AB; Lee JW; Wu JS; Kim JS; Abidi R; Thuéry P; Strub JM; Dorsselaer AV; Vicens J
    J Org Chem; 2007 Sep; 72(20):7634-40. PubMed ID: 17824650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a new fluorogenic substrate of alpha-amylases and a simple alpha-amylase assay by HPLC.
    Omichi K; Ikenaka T
    J Biochem; 1983 Apr; 93(4):1055-60. PubMed ID: 6190796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs.
    Riddle SM; Vedvik KL; Hanson GT; Vogel KW
    Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved method for converting an unmodified peptide to an energy-transfer substrate for a proteinase.
    Geoghegan KF
    Bioconjug Chem; 1996; 7(3):385-91. PubMed ID: 8816964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of a new pair of fluorescence resonance energy transfer donor and acceptor dyes and its use in a protease assay.
    Kainmüller EK; Ollé EP; Bannwarth W
    Chem Commun (Camb); 2005 Nov; (43):5459-61. PubMed ID: 16261246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection.
    Wang J; Liu B
    Chem Commun (Camb); 2009 May; (17):2284-6. PubMed ID: 19377660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An internally quenched fluorescent substrate for collagenase.
    Saikumari YK; Balaram P
    Biopolymers; 2008; 90(2):131-7. PubMed ID: 18260138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence energy transfer studies of human deoxycytidine kinase: role of cysteine 185 in the conformational changes that occur upon substrate binding.
    Mani RS; Usova EV; Cass CE; Eriksson S
    Biochemistry; 2006 Mar; 45(11):3534-41. PubMed ID: 16533034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, characterization, and partial primary sequence of a major-maltotriose-producing alpha-amylase, ScAmy43, from Sclerotinia sclerotiorum.
    Ben Abdelmalek-Khedher I; Urdaci MC; Limam F; Schmitter JM; Marzouki MN; Bressollier P
    J Microbiol Biotechnol; 2008 Sep; 18(9):1555-63. PubMed ID: 18852512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region.
    Wysocka M; Lesner A; Majkowska G; Legowska A; Guzow K; Rolka K; Wiczk W
    Anal Biochem; 2010 Apr; 399(2):196-201. PubMed ID: 20074540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
    Hu S; Yang H; Cai R; Liu Z; Yang X
    Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer (FRET) using ssDNA binding fluorescent dye.
    Orpana AK
    Biomol Eng; 2004 Apr; 21(2):45-50. PubMed ID: 15113557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct assay for alpha-amylase using fluorophore-modified cyclodextrins.
    Murayama T; Tanabe T; Ikeda H; Ueno A
    Bioorg Med Chem; 2006 Jun; 14(11):3691-6. PubMed ID: 16464599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-color, enzyme-free interrogation of DNA sequences with chemically activated, 3'-fluorophore-labeled nucleotides.
    Griesang N; Giessler K; Lommel T; Richert C
    Angew Chem Int Ed Engl; 2006 Sep; 45(37):6144-8. PubMed ID: 16927357
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.