These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20171192)

  • 21. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1.
    Weihofen A; Ostaszewski B; Minami Y; Selkoe DJ
    Hum Mol Genet; 2008 Feb; 17(4):602-16. PubMed ID: 18003639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival.
    Muqit MM; Davidson SM; Payne Smith MD; MacCormac LP; Kahns S; Jensen PH; Wood NW; Latchman DS
    Hum Mol Genet; 2004 Jan; 13(1):117-35. PubMed ID: 14645198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of parkin and PINK1 by neddylation.
    Choo YS; Vogler G; Wang D; Kalvakuri S; Iliuk A; Tao WA; Bodmer R; Zhang Z
    Hum Mol Genet; 2012 Jun; 21(11):2514-23. PubMed ID: 22388932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration.
    Corti O; Hampe C; Koutnikova H; Darios F; Jacquier S; Prigent A; Robinson JC; Pradier L; Ruberg M; Mirande M; Hirsch E; Rooney T; Fournier A; Brice A
    Hum Mol Genet; 2003 Jun; 12(12):1427-37. PubMed ID: 12783850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology?
    Truban D; Hou X; Caulfield TR; Fiesel FC; Springer W
    J Parkinsons Dis; 2017; 7(1):13-29. PubMed ID: 27911343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation.
    Kim Y; Park J; Kim S; Song S; Kwon SK; Lee SH; Kitada T; Kim JM; Chung J
    Biochem Biophys Res Commun; 2008 Dec; 377(3):975-80. PubMed ID: 18957282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parkin blushed by PINK1.
    Tan JM; Dawson TM
    Neuron; 2006 May; 50(4):527-9. PubMed ID: 16701203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation.
    Xiong H; Wang D; Chen L; Choo YS; Ma H; Tang C; Xia K; Jiang W; Ronai Z; Zhuang X; Zhang Z
    J Clin Invest; 2009 Mar; 119(3):650-60. PubMed ID: 19229105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress.
    Moore DJ; Zhang L; Troncoso J; Lee MK; Hattori N; Mizuno Y; Dawson TM; Dawson VL
    Hum Mol Genet; 2005 Jan; 14(1):71-84. PubMed ID: 15525661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination.
    Lim MK; Kawamura T; Ohsawa Y; Ohtsubo M; Asakawa S; Takayanagi A; Shimizu N
    Exp Cell Res; 2007 Aug; 313(13):2858-74. PubMed ID: 17512523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Pathogenesis of Parkinson's disease: a common pathway between alpha-synuclein and parkin and the mechanism of Lewy bodies formation].
    Hattori N; Machida Y; Noda K
    Rinsho Shinkeigaku; 2005 Nov; 45(11):905-7. PubMed ID: 16447759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin.
    Im E; Yoo L; Hyun M; Shin WH; Chung KC
    Open Biol; 2016 Aug; 6(8):. PubMed ID: 27534820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells.
    Koch A; Lehmann-Horn K; Dächsel JC; Gasser T; Kahle PJ; Lücking CB
    Parkinsonism Relat Disord; 2009 Mar; 15(3):220-5. PubMed ID: 18586549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parkin and defective ubiquitination in Parkinson's disease.
    Dawson TM
    J Neural Transm Suppl; 2006; (70):209-13. PubMed ID: 17017531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation mechanisms of the E3 ubiquitin ligase parkin.
    Panicker N; Dawson VL; Dawson TM
    Biochem J; 2017 Aug; 474(18):3075-3086. PubMed ID: 28860335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease.
    Song P; Li S; Wu H; Gao R; Rao G; Wang D; Chen Z; Ma B; Wang H; Sui N; Deng H; Zhang Z; Tang T; Tan Z; Han Z; Lu T; Zhu Y; Chen Q
    Protein Cell; 2016 Feb; 7(2):114-29. PubMed ID: 26746706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress.
    Muqit MM; Abou-Sleiman PM; Saurin AT; Harvey K; Gandhi S; Deas E; Eaton S; Payne Smith MD; Venner K; Matilla A; Healy DG; Gilks WP; Lees AJ; Holton J; Revesz T; Parker PJ; Harvey RJ; Wood NW; Latchman DS
    J Neurochem; 2006 Jul; 98(1):156-69. PubMed ID: 16805805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum.
    Creed RB; Menalled L; Casey B; Dave KD; Janssens HB; Veinbergs I; van der Hart M; Rassoulpour A; Goldberg MS
    Neuroscience; 2019 Jun; 409():169-179. PubMed ID: 31029729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.